2017
Testing of features for fatigue detection in EOG
NĚMCOVÁ, Andrea, Oto JANOUŠEK, Martin VITEK a Ivo PROVAZNÍKZákladní údaje
Originální název
Testing of features for fatigue detection in EOG
Autoři
NĚMCOVÁ, Andrea (203 Česká republika), Oto JANOUŠEK (203 Česká republika), Martin VITEK (203 Česká republika) a Ivo PROVAZNÍK (203 Česká republika, garant, domácí)
Vydání
BIO-MEDICAL MATERIALS AND ENGINEERING, AMSTERDAM, IOS PRESS, 2017, 0959-2989
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
20601 Medical engineering
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 0.872
Kód RIV
RIV/00216224:14110/17:00097867
Organizační jednotka
Lékařská fakulta
UT WoS
000408296300005
Klíčová slova anglicky
Biopac; blink; electrooculography; REM; scenes; SEM
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 20. 3. 2018 18:40, Soňa Böhmová
Anotace
V originále
The article deals with the testing of features for fatigue detection in electrooculography (EOG) records. An optimal methodology for EOG signal acquisition is described; the Biopac data acquisition system was used. EOG signals were being recorded while 10 volunteers were watching prepared scenes. Three scenes were created for this purpose a rotating ball, a video of driving a car, and a cross. Recorded EOG signals were processed and 20 features were extracted. The features involved blinks, slow eye movement (SEM), rapid eye movement (REM), eye instability, magnitude, and periodicity. These features were statistically tested and discussed in terms of fatigue detection ability. Some of the features were compared with published results. Finally, the best features - fatigue indicators - were selected.