2017
Image-based surrogate biomarkers for molecular subtypes of colorectal cancer
POPOVICI, Vlad, Eva BUDINSKÁ, Ladislav DUŠEK, Michal KOZUBEK, Fred BOSMAN et. al.Základní údaje
Originální název
Image-based surrogate biomarkers for molecular subtypes of colorectal cancer
Autoři
POPOVICI, Vlad (642 Rumunsko, garant, domácí), Eva BUDINSKÁ (703 Slovensko, domácí), Ladislav DUŠEK (203 Česká republika, domácí), Michal KOZUBEK (203 Česká republika, domácí) a Fred BOSMAN (528 Nizozemské království)
Vydání
Bioinformatics, Oxford, Oxford University Press, 2017, 1367-4803
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 5.481
Kód RIV
RIV/00216224:14310/17:00097868
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000404054700013
Klíčová slova anglicky
digital pathology; bioinformatics; molecular subtypes
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 5. 4. 2018 11:32, Ing. Nicole Zrilić
Anotace
V originále
Motivation: Whole genome expression profiling of large cohorts of different types of cancer led to the identification of distinct molecular subcategories (subtypes) that may partially explain the observed inter-tumoral heterogeneity. This is also the case of colorectal cancer (CRC) where several such categorizations have been proposed. Despite recent developments, the problem of subtype definition and recognition remains open, one of the causes being the intrinsic heterogeneity of each tumor, which is difficult to estimate from gene expression profiles. However, one of the observations of these studies indicates that there may be links between the dominant tumor morphology characteristics and the molecular subtypes. Benefiting from a large collection of CRC samples, comprising both gene expression and histopathology images, we investigated the possibility of building image-based classifiers able to predict the molecular subtypes. We employed deep convolutional neural networks for extracting local descriptors which were then used for constructing a dictionary-based representation of each tumor sample. A set of support vector machine classifiers were trained to solve different binary decision problems, their combined outputs being used to predict one of the five molecular subtypes. Results: A hierarchical decomposition of the multi-class problem was obtained with an overall accuracy of 0.84 (95% CI = 0.79-0.88). The predictions from the image-based classifier showed significant prognostic value similar to their molecular counterparts.
Návaznosti
4SGA8736, interní kód MU |
|