J 2017

Identification of "BRAF-Positive" Cases Based on Whole-Slide Image Analysis

POPOVICI, Vlad, Aleš KŘENEK a Eva BUDINSKÁ

Základní údaje

Originální název

Identification of "BRAF-Positive" Cases Based on Whole-Slide Image Analysis

Autoři

POPOVICI, Vlad (642 Rumunsko, garant, domácí), Aleš KŘENEK (203 Česká republika, domácí) a Eva BUDINSKÁ (703 Slovensko, domácí)

Vydání

Biomed Research International, New York, HINDAWI LTD, 2017, 2314-6133

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10201 Computer sciences, information science, bioinformatics

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Impakt faktor

Impact factor: 2.583

Kód RIV

RIV/00216224:14310/17:00097871

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000399970000001

Klíčová slova anglicky

digital pathology; bioinformatics; BRAF signature

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 5. 4. 2018 11:22, Ing. Nicole Zrilić

Anotace

V originále

A key requirement for precision medicine is the accurate identification of patients that would respond to a specific treatment or those that represent a high-risk group, and a plethora of molecular biomarkers have been proposed for this purpose during the last decade. Their application in clinical settings, however, is not always straightforward due to relatively high costs of some tests, limited availability of the biological material and time, and procedural constraints. Hence, there is an increasing interest in constructing tissue-based surrogate biomarkers that could be applied with minimal overhead directly to histopathology images and which could be used for guiding the selection of eventual further molecular tests. In the context of colorectal cancer, we present a method for constructing a surrogate biomarker that is able to predict with high accuracy whether a sample belongs to the "BRAF-positive" group, a high-risk group comprising V600E BRAF mutants and BRAF-mutant-like tumors. Our model is trained to mimic the predictions of a 64-gene signature, the current definition of BRAF-positive group, thus effectively identifying histopathology image features that can be linked to a molecular score. Since the only required input is the routine histopathology image, the model can easily be integrated in the diagnostic workflow.

Návaznosti

LM2015085, projekt VaV
Název: CERIT Scientific Cloud (Akronym: CERIT-SC)
Investor: Ministerstvo školství, mládeže a tělovýchovy ČR, CERIT Scientific Cloud
4SGA8736, interní kód MU
Název: Computational framework for joint analysis of histopathology images and gene expression data (Akronym: HIGEX)
Investor: Jihomoravský kraj, Computational framework for joint analysis of histopathology images and gene expression data, Granty pro zahraniční vědce