2017
ECG features and methods for automatic classification of ventricular premature and ischemic heartbeats: A comprehensive experimental study
MARŠÁNOVÁ, Lucie, Marina RONZHINA, Radovan SMÍŠEK, Martin VÍTEK, Andrea NĚMCOVÁ et. al.Základní údaje
Originální název
ECG features and methods for automatic classification of ventricular premature and ischemic heartbeats: A comprehensive experimental study
Autoři
MARŠÁNOVÁ, Lucie (203 Česká republika), Marina RONZHINA (203 Česká republika), Radovan SMÍŠEK (203 Česká republika), Martin VÍTEK (203 Česká republika), Andrea NĚMCOVÁ (203 Česká republika), Lukáš SMITAL (203 Česká republika) a Marie NOVÁKOVÁ (203 Česká republika, garant, domácí)
Vydání
Scientific Reports, LONDON, NATURE PUBLISHING GROUP, 2017, 2045-2322
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30105 Physiology
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 4.122
Kód RIV
RIV/00216224:14110/17:00097888
Organizační jednotka
Lékařská fakulta
UT WoS
000410064000075
Klíčová slova anglicky
ECG features
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 20. 3. 2018 17:43, Soňa Böhmová
Anotace
V originále
Accurate detection of cardiac pathological events is an important part of electrocardiogram (ECG) evaluation and subsequent correct treatment of the patient. The paper introduces the results of a complex study, where various aspects of automatic classification of various heartbeat types have been addressed. Particularly, non-ischemic, ischemic (of two different grades) and subsequent ventricular premature beats were classified in this combination for the first time. ECGs recorded in rabbit isolated hearts under non-ischemic and ischemic conditions were used for analysis. Various morphological and spectral features (both commonly used and newly proposed) as well as classification models were tested on the same data set. It was found that: a) morphological features are generally more suitable than spectral ones; b) successful results (accuracy up to 98.3% and 96.2% for morphological and spectral features, respectively) can be achieved using features calculated without time-consuming delineation of QRS-T segment; c) use of reduced number of features (3 to 14 features) for model training allows achieving similar or even better performance as compared to the whole feature sets (10 to 29 features); d) k-nearest neighbours and support vector machine seem to be the most appropriate models (accuracy up to 98.6% and 93.5%, respectively).
Návaznosti
MUNI/A/1355/2016, interní kód MU |
|