2018
Sentence and Word Embedding Employed in Open Question-Answering
MEDVEĎ, Marek a Aleš HORÁKZákladní údaje
Originální název
Sentence and Word Embedding Employed in Open Question-Answering
Autoři
MEDVEĎ, Marek (703 Slovensko, garant, domácí) a Aleš HORÁK (203 Česká republika, domácí)
Vydání
Setúbal, Portugal, Proceedings of the 10th International Conference on Agents and Artificial Intelligence (ICAART 2018), od s. 486-492, 7 s. 2018
Nakladatel
SCITEPRESS - Science and Technology Publications
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
60200 6.2 Languages and Literature
Stát vydavatele
Portugalsko
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Kód RIV
RIV/00216224:14330/18:00100739
Organizační jednotka
Fakulta informatiky
ISBN
978-989-758-275-2
Klíčová slova anglicky
question answering; word embedding; word2vec; AQA; Simple Question Answering Database; SQAD
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 30. 4. 2019 06:08, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
The Automatic Question Answering, or AQA, system is a representative of open domain QA systems, where the answer selection process leans on syntactic and semantic similarities between the question and the answering text snippets. Such approach is specifically oriented to languages with fine grained syntactic and morphologic features that help to guide the correct QA match. In this paper, we present the latest results of the AQA system with new word embedding criteria implementation. All AQA processing steps (question processing, answer selection and answer extraction) are syntax-based with advanced scoring obtained by a combination of several similarity criteria (TF-IDF, tree distance, ...). Adding the word embedding parameters helped to resolve the QA match in cases, where the answer is expressed by semantically near equivalents. We describe the design and implementation of the whole QA process and provide a new evaluation of the AQA system with the word embedding criteria measured with an expanded version of Simple Question-Answering Database, or SQAD, with more than 3000 question-answer pairs extracted from the Czech Wikipedia.
Návaznosti
GA15-13277S, projekt VaV |
| ||
MUNI/A/0854/2017, interní kód MU |
|