J 2017

syris: a flexible and efficient framework for X-ray imaging experiments simulation

FARAGÓ, Tomáš, Petr MIKULÍK, A. ERSHOV, M. VOGELGESANG, D. HANSCHKE et. al.

Základní údaje

Originální název

syris: a flexible and efficient framework for X-ray imaging experiments simulation

Autoři

FARAGÓ, Tomáš (703 Slovensko), Petr MIKULÍK (203 Česká republika, garant, domácí), A. ERSHOV (643 Rusko), M. VOGELGESANG (276 Německo), D. HANSCHKE (276 Německo) a T. BAUMBACH (276 Německo)

Vydání

Journal of Synchrotron Radiation, CHESTER, INT UNION CRYSTALLOGRAPHY, 2017, 1600-5775

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10302 Condensed matter physics

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 3.232

Kód RIV

RIV/00216224:14310/17:00098888

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000414172900018

Klíčová slova česky

simulace; zobrazování; radiografie; CT; fázový kontrast; synchrotronové záření

Klíčová slova anglicky

simulation; high-speed imaging; parallelization; free-space propagation; coherence; X-ray imaging; synchrotron radiation

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 12. 4. 2018 10:26, Ing. Nicole Zrilić

Anotace

V originále

An open-source framework for conducting a broad range of virtual X-ray imaging experiments, syris, is presented. The simulated wavefield created by a source propagates through an arbitrary number of objects until it reaches a detector. The objects in the light path and the source are time-dependent, which enables simulations of dynamic experiments, e.g. four-dimensional time-resolved tomography and laminography. The high-level interface of syris is written in Python and its modularity makes the framework very flexible. The computationally demanding parts behind this interface are implemented in OpenCL, which enables fast calculations on modern graphics processing units. The combination of flexibility and speed opens new possibilities for studying novel imaging methods and systematic search of optimal combinations of measurement conditions and data processing parameters. This can help to increase the success rates and efficiency of valuable synchrotron beam time. To demonstrate the capabilities of the framework, various experiments have been simulated and compared with real data. To show the use case of measurement and data processing parameter optimization based on simulation, a virtual counterpart of a high-speed radiography experiment was created and the simulated data were used to select a suitable motion estimation algorithm; one of its parameters was optimized in order to achieve the best motion estimation accuracy when applied on the real data. syris was also used to simulate tomographic data sets under various imaging conditions which impact the tomographic reconstruction accuracy, and it is shown how the accuracy may guide the selection of imaging conditions for particular use cases.