2017
syris: a flexible and efficient framework for X-ray imaging experiments simulation
FARAGÓ, Tomáš, Petr MIKULÍK, A. ERSHOV, M. VOGELGESANG, D. HANSCHKE et. al.Základní údaje
Originální název
syris: a flexible and efficient framework for X-ray imaging experiments simulation
Autoři
FARAGÓ, Tomáš (703 Slovensko), Petr MIKULÍK (203 Česká republika, garant, domácí), A. ERSHOV (643 Rusko), M. VOGELGESANG (276 Německo), D. HANSCHKE (276 Německo) a T. BAUMBACH (276 Německo)
Vydání
Journal of Synchrotron Radiation, CHESTER, INT UNION CRYSTALLOGRAPHY, 2017, 1600-5775
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10302 Condensed matter physics
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.232
Kód RIV
RIV/00216224:14310/17:00098888
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000414172900018
Klíčová slova česky
simulace; zobrazování; radiografie; CT; fázový kontrast; synchrotronové záření
Klíčová slova anglicky
simulation; high-speed imaging; parallelization; free-space propagation; coherence; X-ray imaging; synchrotron radiation
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 12. 4. 2018 10:26, Ing. Nicole Zrilić
Anotace
V originále
An open-source framework for conducting a broad range of virtual X-ray imaging experiments, syris, is presented. The simulated wavefield created by a source propagates through an arbitrary number of objects until it reaches a detector. The objects in the light path and the source are time-dependent, which enables simulations of dynamic experiments, e.g. four-dimensional time-resolved tomography and laminography. The high-level interface of syris is written in Python and its modularity makes the framework very flexible. The computationally demanding parts behind this interface are implemented in OpenCL, which enables fast calculations on modern graphics processing units. The combination of flexibility and speed opens new possibilities for studying novel imaging methods and systematic search of optimal combinations of measurement conditions and data processing parameters. This can help to increase the success rates and efficiency of valuable synchrotron beam time. To demonstrate the capabilities of the framework, various experiments have been simulated and compared with real data. To show the use case of measurement and data processing parameter optimization based on simulation, a virtual counterpart of a high-speed radiography experiment was created and the simulated data were used to select a suitable motion estimation algorithm; one of its parameters was optimized in order to achieve the best motion estimation accuracy when applied on the real data. syris was also used to simulate tomographic data sets under various imaging conditions which impact the tomographic reconstruction accuracy, and it is shown how the accuracy may guide the selection of imaging conditions for particular use cases.