2017
Contribution of heart extracellular matrix bioscaffolds to disclose the mechanic dynamics behind cardiac pathologies
PERESTRELO, Ana Rubina, Jorge Oliver de la CRUZ, Guido CALUORI, Stefania PAGLIARI, Vladimír VINARSKÝ et. al.Základní údaje
Originální název
Contribution of heart extracellular matrix bioscaffolds to disclose the mechanic dynamics behind cardiac pathologies
Autoři
PERESTRELO, Ana Rubina, Jorge Oliver de la CRUZ, Guido CALUORI, Stefania PAGLIARI, Vladimír VINARSKÝ, Víta ŽAMPACHOVÁ, Vladimír HORVÁTH, Martin PEŠL, Petr SKLÁDAL, Diana S NASCIMENTO, Perpétua PINTO-DO-Ó a Giancarlo FORTE
Vydání
European Cells and Materials, 2017, 1473-2262
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
Genetika a molekulární biologie
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.667
Organizační jednotka
Lékařská fakulta
Příznaky
Mezinárodní význam
Změněno: 1. 2. 2018 17:55, MUDr. Martin Pešl, Ph.D.
Anotace
V originále
The complex architecture of cardiac extracellular matrix (ECM) provides a unique 3D environment fundamental for cardiac development, homeostasis, and functionality. The derangement of ECM integrity occurring during the onset and progression of cardiac diseases drives a modification in the nanotopography and mechano-physical properties of the ECM itself, thus impairing cardiac cell contractility and proper organ function. Furthermore, our immunohistochemistry and gene expression analysis, on infarcted mouse hearts and human cardiac biopsies, confirms that the dramatic structural changes triggered by myocardial infarction and tissue remodelling, leading to heart failure, causes aswitch in cardiac cell mechanosome.Cardiac decellularized ECM (dECM) obtained from physiological and pathological specimens feature the three dimensional cues, mechanical properties, chemical complexity and the native organization of heart tissue in healthy and diseased condition. For this reason, they are here proposed as an in vitromodel to investigate the mechanisms of cell-ECM interaction, especially consequent to cardiac pathologies.In this study, we show that second harmonic generation imaging, scanning electron microscopy and atomic force microscopy can be implemented to obtain high-resolution 3D maps of cardiac dECM structure and mechanical properties, as an essential asset to the conventional immunostaining and protein analyses. Furthermore, recellularization of physiological and pathological myocardial scaffolds resulted in distinct cell-dECM interactions, thus bringing further hints to disclose a possible window of action for heart cell therapies. Altogether, our findings show that cardiac dECMs are powerful and reliable toolboxes to monitor cardiac nanostructural changes and to investigate cardiac system mechanobiology.