2017
Divisibility of quantum dynamical maps and collision models
FILIPPOV, Sergey N., Yirki PIILO, Sabrina MANISCALCO a Mário ZIMANZákladní údaje
Originální název
Divisibility of quantum dynamical maps and collision models
Název česky
Faktorizace kvantových dynamických map a kolizní modely
Autoři
FILIPPOV, Sergey N. (643 Rusko), Yirki PIILO (246 Finsko), Sabrina MANISCALCO (380 Itálie) a Mário ZIMAN (703 Slovensko, domácí)
Vydání
Physical Review A, 2017, 2469-9926
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10303 Particles and field physics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.909
Kód RIV
RIV/00216224:14330/17:00095466
Organizační jednotka
Fakulta informatiky
UT WoS
000410860100002
Klíčová slova česky
kvantová dynamika - kvantové simulace
Klíčová slova anglicky
quantum dynamics - quantum simulation
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 14. 6. 2022 11:51, RNDr. Pavel Šmerk, Ph.D.
V originále
The divisibility of dynamical maps is visualized by trajectories in the parameter space and analyzed within the framework of collision models. We introduce ultimate completely positive (CP) divisible processes, which lose CP divisibility under infinitesimal perturbations, and characterize Pauli dynamical semigroups exhibiting such a property. We construct collision models with factorized environment particles, which realize additivity and multiplicativity of generators of CP divisible maps. A mixture of dynamical maps is obtained with the help of correlated environment. The mixture of ultimate CP divisible processes is shown to result in a class of eternal CP indivisible evolutions. We explicitly find collision models leading to weakly and essentially non-Markovian Pauli dynamical maps.
Česky
The divisibility of dynamical maps is visualized by trajectories in the parameter space and analyzed within the framework of collision models. We introduce ultimate completely positive (CP) divisible processes, which lose CP divisibility under infinitesimal perturbations, and characterize Pauli dynamical semigroups exhibiting such a property. We construct collision models with factorized environment particles, which realize additivity and multiplicativity of generators of CP divisible maps. A mixture of dynamical maps is obtained with the help of correlated environment. The mixture of ultimate CP divisible processes is shown to result in a class of eternal CP indivisible evolutions. We explicitly find collision models leading to weakly and essentially non-Markovian Pauli dynamical maps.
Návaznosti
GA16-22211S, projekt VaV |
|