2018
Shaken Snow Globes: Kinematic Tracers of the Multiphase Condensation Cascade in Massive Galaxies, Groups, and Clusters
GASPARI, M., M. MCDONALD, S. L. HAMER, F. BRIGHENTI, P. TEMI et. al.Základní údaje
Originální název
Shaken Snow Globes: Kinematic Tracers of the Multiphase Condensation Cascade in Massive Galaxies, Groups, and Clusters
Autoři
GASPARI, M. (380 Itálie), M. MCDONALD (840 Spojené státy), S. L. HAMER (826 Velká Británie a Severní Irsko), F. BRIGHENTI (380 Itálie), P. TEMI (380 Itálie), M. GENDRON-MARSOLAIS (250 Francie), J. HLAVACEK-LARRONDO (124 Kanada), A. C. EDGE (826 Velká Británie a Severní Irsko), Norbert WERNER (703 Slovensko, garant, domácí), P. TOZZI (380 Itálie), M. SUN (156 Čína), J. M. STONE (840 Spojené státy), G. R. TREMBLAY (840 Spojené státy), M. T. HOGAN (826 Velká Británie a Severní Irsko), D. ECKERT (756 Švýcarsko), S. ETTORI (380 Itálie), H. YU (156 Čína), V. BIFFI (380 Itálie) a S. PLANELLES (724 Španělsko)
Vydání
Astrophysical Journal, Chicago, University of Chicago Press, 2018, 0004-637X
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10308 Astronomy
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 5.580
Kód RIV
RIV/00216224:14310/18:00102372
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000425961400004
Klíčová slova anglicky
galaxies: active; hydrodynamics; radio lines: ISM; techniques: spectroscopic; turbulence; X-rays: galaxies: clusters
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 10. 11. 2022 12:53, Mgr. Marie Šípková, DiS.
Anotace
V originále
We propose a novel method to constrain turbulence and bulk motions in massive galaxies, galaxy groups, and clusters, exploring both simulations and observations. As emerged in the recent picture of top-down multiphase condensation, hot gaseous halos are tightly linked to all other phases in terms of cospatiality and thermodynamics. While hot halos (similar to 10(7) K) are perturbed by subsonic turbulence, warm (similar to 10(4) K) ionized and neutral filaments condense out of the turbulent eddies. The peaks condense into cold molecular clouds (< 100 K) raining in the core via chaotic cold accretion (CCA). We show that all phases are tightly linked in terms of the ensemble (wide-aperture) velocity dispersion along the line of sight. The correlation arises in complementary long-term AGN feedback simulations and high-resolution CCA runs, and is corroborated by the combined Hitomi and new Integral Field Unit measurements in the Perseus cluster. The ensemble multiphase gas distributions (from the UV to the radio band) are characterized by substantial spectral line broadening (sigma(v, los) approximate to 100-200 km s(-1)) with a mild line shift. On the other hand, pencil-beam detections (as H I absorption against the AGN backlight) sample the small-scale clouds displaying smaller broadening and significant line shifts of up to several 100 km s(-1) (for those falling toward the AGN), with increased scatter due to the turbulence intermittency. We present new ensemble sigma(v, los) of the warm H alpha+[N II] gas in 72 observed cluster/group cores: the constraints are consistent with the simulations and can be used as robust proxies for the turbulent velocities, in particular for the challenging hot plasma (otherwise requiring extremely long X-ray exposures). Finally, we show that the physically motivated criterion C equivalent to t(cool)/t(eddy) approximate to 1 best traces the condensation extent region and the presence of multiphase gas in observed clusters and groups. The ensemble method can be applied to many available spectroscopic data sets and can substantially advance our understanding of multiphase halos in light of the next-generation multiwavelength missions.