2017
Cosmological Perturbations in Restricted f(R)-Gravity
KLUSOŇ, Josef, Masud CHAICHIIAN a Amir GHALEEZákladní údaje
Originální název
Cosmological Perturbations in Restricted f(R)-Gravity
Název česky
Kosmologické poruchy v omezené f(R) gravitaci
Autoři
KLUSOŇ, Josef (203 Česká republika, garant, domácí), Masud CHAICHIIAN (246 Finsko) a Amir GHALEE (364 Írán)
Vydání
Physical review D, American Physical Society, 2017, 2470-0010
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10303 Particles and field physics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 4.394
Kód RIV
RIV/00216224:14310/17:00095558
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000406878300004
Klíčová slova česky
Horavova-Lifsicova gravitaceů; kosmologicke poruchy
Klíčová slova anglicky
Horava-Lifshitz gravity; Cosmological Perturbations
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 30. 3. 2018 20:31, Ing. Nicole Zrilić
V originále
We investigate the metric perturbations of the restricted f(R) theory of gravity in the cosmological context and explore the phenomenological implications of this model. We show that it is possible to construct a restricted model of gravity, in which the background equations are the same as the equations of motion which are derived from the Einstein-Hilbert action with the cosmological constant term. We argue that the deviation from the Einstein-Hilbert model emerges in the perturbed equations, for which we have a nonvanishing anisotropic stress. Further, with the help of the results of Planck data for the modified gravity, we obtain constraints on the parameters of the model.
Česky
Zkoumáme metrické poruchy omezené f(R) gravitace v kosmologickém kontextu a studujeme phenomonologické implikace tohoto modelu. Ukážeme, že je možné studovat tuto teorii, kdy rovnice pozadí jsou stejné, jako odvozené z Einstein Hilbertovy akce s kosmologickým členem, že pouze se odlišují na úrovni poruchového počtu.
Návaznosti
GBP201/12/G028, projekt VaV |
|