2018
Combination of laser-induced breakdown spectroscopy and Raman spectroscopy for multivariate classification of bacteria
PROCHAZKA, David, Martin MAZURA, Ota SAMEK, Katarína REBROŠOVÁ, Pavel PORIZKA et. al.Základní údaje
Originální název
Combination of laser-induced breakdown spectroscopy and Raman spectroscopy for multivariate classification of bacteria
Autoři
PROCHAZKA, David (203 Česká republika, garant), Martin MAZURA (203 Česká republika), Ota SAMEK (203 Česká republika), Katarína REBROŠOVÁ (703 Slovensko, domácí), Pavel PORIZKA (203 Česká republika), J. KLUS (203 Česká republika), Petra PROCHAZKOVÁ (203 Česká republika, domácí), J. NOVOTNY (203 Česká republika), Karel NOVOTNÝ (203 Česká republika) a J. KAISER (203 Česká republika)
Vydání
Spectrochimica Acta, Part B: Atomic Spectroscopy, Oxford, PERGAMON-ELSEVIER SCIENCE LTD, 2018, 0584-8547
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
21100 2.11 Other engineering and technologies
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.101
Kód RIV
RIV/00216224:14110/18:00102429
Organizační jednotka
Lékařská fakulta
UT WoS
000423897000002
Klíčová slova anglicky
Laser-induced breakdown spectroscopy; Raman spectroscopy; Chemometrics; Bacteria
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 26. 3. 2019 10:29, Soňa Böhmová
Anotace
V originále
In this work, we investigate the impact of data provided by complementary laser-based spectroscopic methods on multivariate classification accuracy. Discrimination and classification of five Staphylococcus bacterial strains and one strain of Escherichia coli is presented. The technique that we used for measurements is a combination of Raman spectroscopy and Laser-Induced Breakdown Spectroscopy (LIBS). Obtained spectroscopic data were then processed using Multivariate Data Analysis algorithms. Principal Components Analysis (PCA) was selected as the most suitable technique for visualization of bacterial strains data. To classify the bacterial strains, we used Neural Networks, namely a supervised version of Kohonen's self-organizing maps (SOM). We were processing results in three different ways - separately from LIBS measurements, from Raman measurements, and we also merged data from both mentioned methods. The three types of results were then compared. By applying the PCA to Raman spectroscopy data, we observed that two bacterial strains were fully distinguished from the rest of the data set. In the case of LIBS data, three bacterial strains were fully discriminated. Using a combination of data from both methods, we achieved the complete discrimination of all bacterial strains. All the data were classified with a high success rate using SOM algorithm. The most accurate classification was obtained using a combination of data from both techniques. The classification accuracy varied, depending on specific samples and techniques. As for LIBS, the classification accuracy ranged from 45% to 100%, as for Raman Spectroscopy from 50% to 100% and in case of merged data, all samples were classified correctly. Based on the results of the experiments presented in this work, we can assume that the combination of Raman spectroscopy and LIBS significantly enhances discrimination and classification accuracy of bacterial species and strains. The reason is the complementarity in obtained chemical information while using these two methods. (C) 2017 Elsevier B.V. All rights reserved.
Návaznosti
LQ1601, projekt VaV |
|