J 2018

Discrete and Continuous Strategies for Timed-Arc Petri Net Games

JENSEN, Peter G., Kim G. LARSEN a Jiří SRBA

Základní údaje

Originální název

Discrete and Continuous Strategies for Timed-Arc Petri Net Games

Autoři

JENSEN, Peter G. (208 Dánsko), Kim G. LARSEN (208 Dánsko) a Jiří SRBA (203 Česká republika, garant, domácí)

Vydání

International Journal on Software Tools for Technology Transfer (STTT), Springer, 2018, 1433-2779

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10200 1.2 Computer and information sciences

Stát vydavatele

Nizozemské království

Utajení

není předmětem státního či obchodního tajemství

Impakt faktor

Impact factor: 1.270

Kód RIV

RIV/00216224:14330/18:00102444

Organizační jednotka

Fakulta informatiky

UT WoS

000441949300004

Klíčová slova anglicky

timed-ard Petri nets; games; continuous and discrete time; strategy synthesis

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 29. 4. 2019 15:33, RNDr. Pavel Šmerk, Ph.D.

Anotace

V originále

Automatic strategy synthesis for a given control objective can be used to generate correct-by-construction controllers of real-time reactive systems. The existing symbolic approach for continuous timed game is a computationally hard task and current tools like UPPAAL TiGa often scale poorly with the model complexity. We suggest an explicit approach for strategy synthesis in the discrete-time setting and show that even for systems with closed guards, the existence of a safety discrete-time strategy does not imply the existence of a safety continuous-time strategy and vice versa. Nevertheless, we prove that the answers to the existence of discrete-time and continuous-time safety strategies coincide on a practically motivated subclass of urgent controllers that either react immediately after receiving an environmental input or wait with the decision until a next event is triggered by the environment. We then develop an on-the-fly synthesis algorithm for discrete timed-arc Petri net games. The algorithm is implemented in our tool TAPAAL, and based on the experimental evidence, we discuss the advantages of our approach compared to the symbolic continuous-time techniques.