2018
A critical comparison of topology-based pathway analysis methods
IHNATOVÁ, Ivana, Vlad POPOVICI a Eva BUDINSKÁZákladní údaje
Originální název
A critical comparison of topology-based pathway analysis methods
Autoři
IHNATOVÁ, Ivana (703 Slovensko, domácí), Vlad POPOVICI (642 Rumunsko, domácí) a Eva BUDINSKÁ (703 Slovensko, garant, domácí)
Vydání
Plos one, San Francisco, Public Library Science, 2018, 1932-6203
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10700 1.7 Other natural sciences
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.776
Kód RIV
RIV/00216224:14310/18:00102453
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000423416600042
Klíčová slova anglicky
topology-based pathway analysis; gene-set enrichment analysis; pathway analysis; microarrays; RNA-seq
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 6. 12. 2018 20:40, Mgr. Michaela Hylsová, Ph.D.
Anotace
V originále
One of the aims of high-throughput gene/protein profiling experiments is the identification of biological processes altered between two or more conditions. Pathway analysis is an umbrella term for a multitude of computational approaches used for this purpose. While in the beginning pathway analysis relied on enrichment-based approaches, a newer generation of methods is now available, exploiting pathway topologies in addition to gene/protein expression levels. However, little effort has been invested in their critical assessment with respect to their performance in different experimental setups. Here, we assessed the performance of seven representative methods identifying differentially expressed pathways between two groups of interest based on gene expression data with prior knowledge of pathway topologies: SPIA, PRS, CePa, TAPPA, TopologyGSA, Clipper and DEGraph. We performed a number of controlled experiments that investigated their sensitivity to sample and pathway size, threshold-based filtering of differentially expressed genes, ability to detect target pathways, ability to exploit the topological information and the sensitivity to different preprocessing strategies. We also verified type I error rates and described the influence of overexpression of single genes, gene sets and topological motifs of various sizes on the detection of a pathway as differentially expressed. The results of our experiments demonstrate a wide variability of the tested methods. We provide a set of recommendations for an informed selection of the proper method for a given data analysis task.
Návaznosti
EF15_003/0000469, projekt VaV |
| ||
LM2015085, projekt VaV |
| ||
602901, interní kód MU |
|