J 2018

A critical comparison of topology-based pathway analysis methods

IHNATOVÁ, Ivana, Vlad POPOVICI a Eva BUDINSKÁ

Základní údaje

Originální název

A critical comparison of topology-based pathway analysis methods

Autoři

IHNATOVÁ, Ivana (703 Slovensko, domácí), Vlad POPOVICI (642 Rumunsko, domácí) a Eva BUDINSKÁ (703 Slovensko, garant, domácí)

Vydání

Plos one, San Francisco, Public Library Science, 2018, 1932-6203

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10700 1.7 Other natural sciences

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 2.776

Kód RIV

RIV/00216224:14310/18:00102453

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000423416600042

Klíčová slova anglicky

topology-based pathway analysis; gene-set enrichment analysis; pathway analysis; microarrays; RNA-seq

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 6. 12. 2018 20:40, Mgr. Michaela Hylsová, Ph.D.

Anotace

V originále

One of the aims of high-throughput gene/protein profiling experiments is the identification of biological processes altered between two or more conditions. Pathway analysis is an umbrella term for a multitude of computational approaches used for this purpose. While in the beginning pathway analysis relied on enrichment-based approaches, a newer generation of methods is now available, exploiting pathway topologies in addition to gene/protein expression levels. However, little effort has been invested in their critical assessment with respect to their performance in different experimental setups. Here, we assessed the performance of seven representative methods identifying differentially expressed pathways between two groups of interest based on gene expression data with prior knowledge of pathway topologies: SPIA, PRS, CePa, TAPPA, TopologyGSA, Clipper and DEGraph. We performed a number of controlled experiments that investigated their sensitivity to sample and pathway size, threshold-based filtering of differentially expressed genes, ability to detect target pathways, ability to exploit the topological information and the sensitivity to different preprocessing strategies. We also verified type I error rates and described the influence of overexpression of single genes, gene sets and topological motifs of various sizes on the detection of a pathway as differentially expressed. The results of our experiments demonstrate a wide variability of the tested methods. We provide a set of recommendations for an informed selection of the proper method for a given data analysis task.

Návaznosti

EF15_003/0000469, projekt VaV
Název: Cetocoen Plus
LM2015085, projekt VaV
Název: CERIT Scientific Cloud (Akronym: CERIT-SC)
Investor: Ministerstvo školství, mládeže a tělovýchovy ČR, CERIT Scientific Cloud
602901, interní kód MU
Název: MErCuRIC - A Phase Ib/II study of MEK1/2 inhibitor PD-­‐0325901 with cMET inhibitor PF-­‐02341066 in KRASMT and KRASWT (with aberrant c-­‐MET) Colorectal Cancer Patients (Akronym: MErCuRIC)
Investor: Evropská unie, MErCuRIC - A Phase Ib/II study of MEK1/2 inhibitor PD-­‐0325901 with cMET inhibitor PF-­‐02341066 in KRASMT and KRASWT (with aberrant c-­‐MET) Colorectal Cancer Patients, Spolupráce