2016
Model Checking Existential Logic on Partially Ordered Sets
GANIAN, Robert; Stefan SZEIDER a Simone BOVAZákladní údaje
Originální název
Model Checking Existential Logic on Partially Ordered Sets
Autoři
GANIAN, Robert (203 Česká republika, garant, domácí); Stefan SZEIDER (40 Rakousko) a Simone BOVA (380 Itálie)
Vydání
ACM Trans. Comput. Log. USA, ACM, 2016, 1529-3785
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10200 1.2 Computer and information sciences
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 0.961
Kód RIV
RIV/00216224:14330/16:00100545
Organizační jednotka
Fakulta informatiky
UT WoS
000373902700003
EID Scopus
2-s2.0-84948988989
Klíčová slova anglicky
model checking; parameterized complexity; partially ordered sets; width
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 18. 5. 2018 06:47, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
We study the problem of checking whether an existential sentence (that is, a first-order sentence in prefix form built using existential quantifiers and all Boolean connectives) is true in a finite partially ordered set (in short, a poset). A poset is a reflexive, antisymmetric, and transitive digraph. The problem encompasses the fundamental embedding problem of finding an isomorphic copy of a poset as an induced substructure of another poset. Model checking existential logic is already NP-hard on a fixed poset; thus we investigate structural properties of posets yielding conditions for fixed-parameter tractability when the problem is parameterized by the sentence. We identify width as a central structural property (the width of a poset is the maximum size of a subset of pairwise incomparable elements); our main algorithmic result is that model checking existential logic on classes of finite posets of bounded width is fixed-parameter tractable. We observe a similar phenomenon in classical complexity, where we prove that the isomorphism problem is polynomial-time tractable on classes of posets of bounded width; this settles an open problem in order theory. We surround our main algorithmic result with complexity results on less restricted, natural neighboring classes of finite posets, establishing its tightness in this sense. We also relate our work with (and demonstrate its independence of) fundamental fixed-parameter tractability results for model checking on digraphs of bounded degree and bounded clique-width.
Návaznosti
MSM0021622419, záměr |
|