2017
Going Beyond Primal Treewidth for {(M)ILP}
GANIAN, Robert, M.S. RAMANUJAN a Sebastian ORDYNIAKZákladní údaje
Originální název
Going Beyond Primal Treewidth for {(M)ILP}
Autoři
GANIAN, Robert (203 Česká republika, garant, domácí), M.S. RAMANUJAN (356 Indie) a Sebastian ORDYNIAK (40 Rakousko)
Vydání
USA, Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA, od s. 815-821, 7 s. 2017
Nakladatel
AAAI
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10200 1.2 Computer and information sciences
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Kód RIV
RIV/00216224:14330/17:00100547
Organizační jednotka
Fakulta informatiky
ISBN
978-1-57735-781-0
ISSN
UT WoS
000485630700114
Klíčová slova anglicky
primal treewidth; ILP
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 1. 6. 2022 12:43, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Integer Linear Programming (ILP) and its mixed variant (MILP) are archetypical examples of NP-complete optimization problems which have a wide range of applications in various areas of artificial intelligence. However, we still lack a thorough understanding of which structural restrictions make these problems tractable. Here we focus on structure captured via so-called decompositional parameters, which have been highly successful in fields such as boolean satisfiability and constraint satisfaction but have not yet reached their full potential in the ILP setting. In particular, primal treewidth (an established decompositional parameter) can only be algorithmically exploited to solve ILP under restricted circumstances. Our main contribution is the introduction and algorithmic exploitation of two new decompositional parameters for ILP and MILP. The first, torso-width, is specifically tailored to the linear programming setting and is the first decompositional parameter which can also be used for MILP. The latter, incidence treewidth, is a concept which originates from boolean satisfiability but has not yet been used in the ILP setting; here we obtain a full complexity landscape mapping the precise conditions under which incidence treewidth can be used to obtain efficient algorithms. Both of these parameters overcome previous shortcomings of primal treewidth for ILP in unique ways, and consequently push the frontiers of tractability for these important problems.