2017
Measuring predictive performance of user models: The details matter
PELÁNEK, RadekZákladní údaje
Originální název
Measuring predictive performance of user models: The details matter
Autoři
PELÁNEK, Radek (203 Česká republika, garant, domácí)
Vydání
USA, Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization, od s. 197-201, 5 s. 2017
Nakladatel
ACM
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Kód RIV
RIV/00216224:14330/17:00100554
Organizační jednotka
Fakulta informatiky
ISBN
978-1-4503-5067-9
UT WoS
000850443800038
Klíčová slova anglicky
AUC; evaluation; metrics; predictive accuracy; RMSE; student modeling
Změněno: 25. 10. 2024 16:26, Mgr. Natálie Hílek
Anotace
V originále
Evaluation of user modeling techniques is often based on the predictive accuracy of models. The quantification of predictive accuracy is done using performance metrics. We show that the choice of a performance metric is important and that even details of metric computation matter. We analyze in detail two commonly used metrics (AUC, RMSE) in the context of student modeling. We discuss different approaches to their computation (global, averaging across skill, averaging across students) and show that these methods have different properties. An analysis of recent research papers shows that the reported descriptions of metric computation are often insufficient. To make research conclusions valid and reproducible, researchers need to pay more attention to the choice of performance metrics and they need to describe more explicitly details of their computation