2018
Planning of distributed data production for High Energy and Nuclear Physics
MAKATUN, Dzmitry, Jerome LAURET a Hana RUDOVÁZákladní údaje
Originální název
Planning of distributed data production for High Energy and Nuclear Physics
Autoři
MAKATUN, Dzmitry (112 Bělorusko), Jerome LAURET (840 Spojené státy) a Hana RUDOVÁ (203 Česká republika, garant, domácí)
Vydání
Cluster Computing, 2018, 1386-7857
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 1.851
Kód RIV
RIV/00216224:14330/18:00100898
Organizační jednotka
Fakulta informatiky
UT WoS
000457276800012
Klíčová slova anglicky
Load balancing; Job scheduling; Planning; Network flow; Distributed computing; Large scale computing; Grid; Data intensive applications; Data production; Big data
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 31. 5. 2022 17:33, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Modern experiments in High Energy and Nuclear Physics heavily rely on distributed computations using multiple computational facilities across the world. One of the essential types of the computations is a distributed data production where petabytes of raw files from a single source has to be processed once (per production campaign) using thousands of CPUs at distant locations and the output has to be transferred back to that source. The data distribution over a large system does not necessary match the distribution of storage, network and CPU capacity. Therefore, bottlenecks may appear and lead to increased latency and degraded performance. In this paper we propose a new scheduling approach for distributed data production which is based on the network flow maximization model. In our approach a central planner defines how much input and output data should be transferred over each network link in order to maximize the computational throughput. Such plans are created periodically for a fixed planning time interval using up-to-date information on network, storage and CPU resources. The centrally created plans are executed in a distributed manner by dedicated services running at participating sites. Our simulations based on the log records from the data production framework of the experiment STAR (Solenoid Tracker at RHIC) have shown that the proposed model systematically provides a better performance compared to the simulated traditional techniques.
Návaznosti
GAP202/12/0306, projekt VaV |
|