a 2018

Use of Drosophila for studying pathogen-insect interactions

HYRŠL, Pavel

Základní údaje

Originální název

Use of Drosophila for studying pathogen-insect interactions

Název česky

Use of Drosophila for studying pathogen-insect interactions

Autoři

HYRŠL, Pavel (203 Česká republika, garant, domácí)

Vydání

Annual Meeting of Microbiology Society, 2018

Další údaje

Jazyk

angličtina

Typ výsledku

Konferenční abstrakt

Obor

10600 1.6 Biological sciences

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Kód RIV

RIV/00216224:14310/18:00100906

Organizační jednotka

Přírodovědecká fakulta

Klíčová slova anglicky

Drosophila; nematodes; immunity; insect
Změněno: 21. 4. 2018 13:24, doc. RNDr. Pavel Hyršl, Ph.D.

Anotace

V originále

Drosophila melanogaster is widely used model insect in genetics, development and diseases research which includes functional homologs of many human genes. There are many advantages of using fruit fly - the culture in laboratory conditions is cheap and easy, they produce large numbers of eggs, have short life cycle, and they can be genetically modified in numerous ways. To study host-pathogen interactions we used Drosophila larvae naturally infected by entomopathogenic nematodes and their associated bacteria. This nematobacterial complex (Heterorhabditis/Photorhabdus or Steinernema/Xenorhabdus) is highly pathogenic and is able to invade and kill insect host within two days. Both bacteria and nematodes produce a variety of factors interacting with the insect immune system and help to overcome host defences. Microarray analysis was used to compare gene expression of Drosophila larvae infected by the entomopathogenic nematode Heterorhabditis bacteriophora and its symbiotic bacterium Photorhabdus luminescens with non-infected larvae. The role of candidate genes, selected based on genomic comparison, in response towards nematobacterial complex was further evaluated by in vivo infection assays using different Drosophila mutants or RNAi lines with defects in clotting or other branches of the immune system. We demonstrated an immune function during nematode infection for known clotting enzymes and substrates, recognition molecules and eicosanoids. In conclusion, we show that the tripartite infection model (Drosophila, nematodes, bacteria) is suitable to identify regulators of innate immunity in insects. Our research is supported by grant No. 17-03253S from the Czech Science Foundation.

Česky

Drosophila melanogaster is widely used model insect in genetics, development and diseases research which includes functional homologs of many human genes. There are many advantages of using fruit fly - the culture in laboratory conditions is cheap and easy, they produce large numbers of eggs, have short life cycle, and they can be genetically modified in numerous ways. To study host-pathogen interactions we used Drosophila larvae naturally infected by entomopathogenic nematodes and their associated bacteria. This nematobacterial complex (Heterorhabditis/Photorhabdus or Steinernema/Xenorhabdus) is highly pathogenic and is able to invade and kill insect host within two days. Both bacteria and nematodes produce a variety of factors interacting with the insect immune system and help to overcome host defences. Microarray analysis was used to compare gene expression of Drosophila larvae infected by the entomopathogenic nematode Heterorhabditis bacteriophora and its symbiotic bacterium Photorhabdus luminescens with non-infected larvae. The role of candidate genes, selected based on genomic comparison, in response towards nematobacterial complex was further evaluated by in vivo infection assays using different Drosophila mutants or RNAi lines with defects in clotting or other branches of the immune system. We demonstrated an immune function during nematode infection for known clotting enzymes and substrates, recognition molecules and eicosanoids. In conclusion, we show that the tripartite infection model (Drosophila, nematodes, bacteria) is suitable to identify regulators of innate immunity in insects. Our research is supported by grant No. 17-03253S from the Czech Science Foundation.

Návaznosti

GA17-03253S, projekt VaV
Název: Hormonální kontrola hmyzího obranného systému
Investor: Grantová agentura ČR, Hormonální kontrola hmyzího obranného systému