2017
Time-space complexity advantages for quantum computing
GRUSKA, JozefZákladní údaje
Originální název
Time-space complexity advantages for quantum computing
Autoři
GRUSKA, Jozef (703 Slovensko, garant, domácí)
Vydání
Cham, Switzerland, Lecture Notes in Computer Science, Volume 10687: 6th International Conference on Theory and Practice of Natural Computing, TPNC 2017, od s. 305-317, 13 s. 2017
Nakladatel
Springer
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14330/17:00100568
Organizační jednotka
Fakulta informatiky
ISBN
978-3-319-71068-6
ISSN
UT WoS
000450354700024
Klíčová slova anglicky
Quantum computing; Time-space complexity
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 5. 11. 2021 12:52, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
It has been proved that quantum computing has advantages in query complexity, communication complexity and also other computing models. However, it is hard to prove strictly that quantum computing has advantage in the Turing machine models in time complexity. For example, we do not know how to prove that Shor’s algorithm is strictly better than any classical algorithm, since we do not know the lower bound of time complexity of the factoring problem in Turing machine. In this paper, we consider the time-space complexity and prove strictly that quantum computing has advantages compared to their classical counterparts. We prove: (1) a time-space upper bound for recognition of the languages LI N T(n) on two-way finite automata with quantum and classical states (2QCFA): TS= O(n3/2log n), whereas a lower bound on probabilistic Turing machine is TS= Omega(n2); (2) a time-space upper bound for recognition of the languages LN E(n) on exact 2QCFA: TS= O(n1.87log n), whereas a lower bound on probabilistic Turing machine is TS= Omega(n2). It has been proved (Klauck, STOC’00) that the exact one-way quantum finite automata have no advantage comparing to classical finite automata in recognizing languages. However, the result (2) shows that the exact 2QCFA do have an advantage in comparison with their classical counterparts, which is the first example showing that the exact quantum computing has advantage in time-space complexity comparing to classical computing.