2017
Automatic detection of laser-induced structures in live cell fluorescent microscopy images using snakes with geometric constraints
KONDRATĚV, Alexandr a Dmitry SOROKINZákladní údaje
Originální název
Automatic detection of laser-induced structures in live cell fluorescent microscopy images using snakes with geometric constraints
Autoři
KONDRATĚV, Alexandr (643 Rusko) a Dmitry SOROKIN (643 Rusko, domácí)
Vydání
Cancun, Mexico, 23rd International Conference on Pattern Recognition, ICPR 2016, od s. 331-336, 6 s. 2017
Nakladatel
Institute of Electrical and Electronics Engineers Inc.
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Kód RIV
RIV/00216224:14330/17:00100647
Organizační jednotka
Fakulta informatiky
ISBN
978-1-5090-4847-2
ISSN
UT WoS
000406771300058
Klíčová slova anglicky
Argon lasers; Cells; Cytology; Fluorescence; Geometry; Image registration; Image segmentation; Matrix algebra
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 5. 11. 2021 15:36, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
The existence of reliable evaluation datasets for cell image registration algorithms is crucial for quantitative comparison of registration approaches. A new technique for creating real live cell image sequences for this purpose was introduced recently. These datasets contain stable structures bleached by argon laser in the cell nucleus. In this work, we propose an approach for automatic detection of laser-induced linear structures in live cell fluorescent microscopy images. Compared to a previous linear laser-induced structure detection approach, our method employs an active contours model with a Hessian-based image energy term for linear structures enhancement and geometric energy term controlling the geometric relations between the structures. It uses position adaptive tension parameter values to adjust the snakes behavior in problematic regions (end points and intersection points) and a temporal consistent scheme where the results from the previous frame are used as an initial approximation for the current frame. Our approach was successfully applied to real live cell microscopy image sequences and an experimental comparison with an existing laser-induced structures detection method based on minimal paths has been performed.