D 2017

Automatic detection of laser-induced structures in live cell fluorescent microscopy images using snakes with geometric constraints

KONDRATĚV, Alexandr a Dmitry SOROKIN

Základní údaje

Originální název

Automatic detection of laser-induced structures in live cell fluorescent microscopy images using snakes with geometric constraints

Autoři

KONDRATĚV, Alexandr (643 Rusko) a Dmitry SOROKIN (643 Rusko, domácí)

Vydání

Cancun, Mexico, 23rd International Conference on Pattern Recognition, ICPR 2016, od s. 331-336, 6 s. 2017

Nakladatel

Institute of Electrical and Electronics Engineers Inc.

Další údaje

Jazyk

angličtina

Typ výsledku

Stať ve sborníku

Obor

10201 Computer sciences, information science, bioinformatics

Stát vydavatele

Švýcarsko

Utajení

není předmětem státního či obchodního tajemství

Forma vydání

tištěná verze "print"

Kód RIV

RIV/00216224:14330/17:00100647

Organizační jednotka

Fakulta informatiky

ISBN

978-1-5090-4847-2

ISSN

UT WoS

000406771300058

Klíčová slova anglicky

Argon lasers; Cells; Cytology; Fluorescence; Geometry; Image registration; Image segmentation; Matrix algebra

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 5. 11. 2021 15:36, RNDr. Pavel Šmerk, Ph.D.

Anotace

V originále

The existence of reliable evaluation datasets for cell image registration algorithms is crucial for quantitative comparison of registration approaches. A new technique for creating real live cell image sequences for this purpose was introduced recently. These datasets contain stable structures bleached by argon laser in the cell nucleus. In this work, we propose an approach for automatic detection of laser-induced linear structures in live cell fluorescent microscopy images. Compared to a previous linear laser-induced structure detection approach, our method employs an active contours model with a Hessian-based image energy term for linear structures enhancement and geometric energy term controlling the geometric relations between the structures. It uses position adaptive tension parameter values to adjust the snakes behavior in problematic regions (end points and intersection points) and a temporal consistent scheme where the results from the previous frame are used as an initial approximation for the current frame. Our approach was successfully applied to real live cell microscopy image sequences and an experimental comparison with an existing laser-induced structures detection method based on minimal paths has been performed.