2018
Probabilistic Classification of Skeleton Sequences
SEDMIDUBSKÝ, Jan a Pavel ZEZULAZákladní údaje
Originální název
Probabilistic Classification of Skeleton Sequences
Autoři
SEDMIDUBSKÝ, Jan (203 Česká republika, garant, domácí) a Pavel ZEZULA (203 Česká republika, domácí)
Vydání
Switzerland, 29th International Conference on Database and Expert Systems Applications (DEXA 2018), od s. 50-65, 16 s. 2018
Nakladatel
Springer
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10200 1.2 Computer and information sciences
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
paměťový nosič (CD, DVD, flash disk)
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14330/18:00100948
Organizační jednotka
Fakulta informatiky
ISBN
978-3-319-98811-5
ISSN
UT WoS
000460551600004
Klíčová slova anglicky
motion capture data; nearest-neighbor search; action recognition; action classification; re-ranking; similarity measure
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 30. 4. 2019 08:16, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Automatic classification of 3D skeleton sequences of human motions has applications in many domains, ranging from entertainment to medicine. The classification is a difficult problem as the motions belonging to the same class needn't be well segmented and can be performed by subjects of various body sizes in different styles and speeds. The state-of-the-art recognition approaches commonly solve this problem by training recurrent neural networks to learn the contextual dependency in both spatial and temporal domains. In this paper, we employ a distance-based similarity measure, based on deep convolutional features, to search for the k-nearest motions with respect to a query motion being classified. The retrieved neighbors are analyzed and re-ranked by additional measures that are automatically chosen for individual queries. The combination of deep features, dynamism in the similarity-measure selection, and a new kNN classifier brings the highest classification accuracy on a challenging dataset with 130 classes. Moreover, the proposed approach can promptly react to changing training data without any need for a retraining process.
Návaznosti
GBP103/12/G084, projekt VaV |
|