2018
Speeding up Continuous kNN Join by Binary Sketches
NÁLEPA, Filip, Michal BATKO a Pavel ZEZULAZákladní údaje
Originální název
Speeding up Continuous kNN Join by Binary Sketches
Autoři
NÁLEPA, Filip (203 Česká republika, garant, domácí), Michal BATKO (203 Česká republika, domácí) a Pavel ZEZULA (203 Česká republika, domácí)
Vydání
Cham, Advances in Data Mining, od s. 183-198, 16 s. 2018
Nakladatel
Springer
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14330/18:00100950
Organizační jednotka
Fakulta informatiky
ISBN
978-3-319-95785-2
ISSN
UT WoS
000469337800014
Klíčová slova anglicky
continuous kNN similarity join; binary sketches
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 13. 5. 2020 19:24, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Real-time recommendation is a necessary component of current social applications. It is responsible for suggesting relevant newly published data to the users based on their preferences. By representing the users and the published data in a metric space, each user can be recommended with their k nearest neighbors among the published data, i.e., the kNN join is computed. In this work, we aim at a frequent requirement that only the recently published data are subject of the recommendation, thus a sliding time window is defined and only the data published within the limits of the window can be recommended. Due to large amounts of both the users and the published data, it becomes a challenging task to continuously update the results of the kNN join as new data come into and go out of the sliding window. We propose a binary sketch-based approximation technique suited especially to cases when the metric distance computation is an expensive operation (e.g., the Euclidean distance in high dimensional vector spaces). It applies cheap Hamming distances to skip over 90% of the expensive metric distance computations. As revealed by our experiments on 4,096 dimensional vectors, the proposed approach significantly outperforms compared existing approaches.
Návaznosti
GA16-18889S, projekt VaV |
|