2018
Inward rectifying potassium currents resolved into components: modeling of complex drug actions
ŠIMURDA, Jiří, Milena ŠIMURDOVÁ a Markéta BÉBAROVÁZákladní údaje
Originální název
Inward rectifying potassium currents resolved into components: modeling of complex drug actions
Autoři
ŠIMURDA, Jiří (203 Česká republika, domácí), Milena ŠIMURDOVÁ (203 Česká republika, domácí) a Markéta BÉBAROVÁ (203 Česká republika, garant, domácí)
Vydání
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, NEW YORK, SPRINGER, 2018, 0031-6768
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30105 Physiology
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 3.377
Kód RIV
RIV/00216224:14110/18:00106922
Organizační jednotka
Lékařská fakulta
UT WoS
000423161400010
Klíčová slova anglicky
Quantitative model; Cardiomyocytes; Inward rectifier potassium currents; I-K1; Ethanol; Dual effect
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 10. 2. 2019 15:04, Soňa Böhmová
Anotace
V originále
Inward rectifier potassium currents (I (Kir,x)) belong to prominent ionic currents affecting both resting membrane voltage and action potential repolarization in cardiomyocytes. In existing integrative models of electrical activity of cardiac cells, they have been described as single current components. The proposed quantitative model complies with findings indicating that these channels are formed by various homomeric or heteromeric assemblies of channel subunits with specific functional properties. Each I (Kir,x) may be expressed as a total of independent currents via individual populations of identical channels, i.e., channels formed by the same combination of their subunits. Solution of the model equations simulated well recently observed unique manifestations of dual ethanol effect in rat ventricular and atrial cells. The model reflects reported occurrence of at least two binding sites for ethanol within I (Kir,x) channels related to slow allosteric conformation changes governing channel conductance and inducing current activation or inhibition. Our new model may considerably improve the existing models of cardiac cells by including the model equations proposed here in the particular case of the voltage-independent drug-channel interaction. Such improved integrative models may provide more precise and, thus, more physiologically relevant results.
Návaznosti
NV16-30571A, projekt VaV |
|