2018
Data Quality Problems in TPC-DI Based Data Integration Processes
YANG, Qishan, Mouzhi GE a Markus HELFERTZákladní údaje
Originální název
Data Quality Problems in TPC-DI Based Data Integration Processes
Autoři
YANG, Qishan, Mouzhi GE (156 Čína, garant, domácí) a Markus HELFERT (276 Německo)
Vydání
Germany, Enterprise Information Systems, od s. 57-73, 17 s. 321, 2018
Nakladatel
Springer Lecture Notes in Business Information Processing
Další údaje
Jazyk
angličtina
Typ výsledku
Kapitola resp. kapitoly v odborné knize
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Kód RIV
RIV/00216224:14330/18:00103077
Organizační jednotka
Fakulta informatiky
ISBN
978-3-319-93374-0
Klíčová slova anglicky
Data quality;Data integration;TPC-DI Benchmark;ETL
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 31. 5. 2022 14:20, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Many data driven organisations need to integrate data from multiple, distributed and heterogeneous resources for advanced data analysis. A data integration system is an essential component to collect data into a data warehouse or other data analytics systems. There are various alternatives of data integration systems which are created inhouse or provided by vendors. Hence, it is necessary for an organisation to compare and benchmark them when choosing a suitable one to meet its requirements. Recently, the TPC-DI is proposed as the first industrial benchmark for evaluating data integration systems. When using this benchmark, we find some typical data quality problems in the TPC-DI data source such as multi-meaning attributes and inconsistent data schemas, which could delay or even fail the data integration process. This paper explains processes of this benchmark and summarises typical data quality problems identified in the TPC-DI data source. Furthermore, in order to prevent data quality problems and proactively manage data quality, we propose a set of practical guidelines for researchers and practitioners to conduct data quality management when using the TPC-DI benchmark.