2018
Model-Based Generation of Synthetic 3D Time-Lapse Sequences of Multiple Mutually Interacting Motile Cells with Filopodia
PETERLÍK, Igor, David SVOBODA, Vladimír ULMAN, Dmitry SOROKIN, Martin MAŠKA et. al.Základní údaje
Originální název
Model-Based Generation of Synthetic 3D Time-Lapse Sequences of Multiple Mutually Interacting Motile Cells with Filopodia
Autoři
PETERLÍK, Igor (703 Slovensko, domácí), David SVOBODA (203 Česká republika, domácí), Vladimír ULMAN (203 Česká republika), Dmitry SOROKIN (643 Rusko) a Martin MAŠKA (203 Česká republika, garant, domácí)
Vydání
Cham, Simulation and Synthesis in Medical Imaging, od s. 71-79, 9 s. 2018
Nakladatel
Springer
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14330/18:00101086
Organizační jednotka
Fakulta informatiky
ISBN
978-3-030-00535-1
ISSN
UT WoS
000477752900008
Klíčová slova anglicky
Simulation; 3D time-lapse sequence; Cell deformation; Cell interaction; Filopodia
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 9. 8. 2019 13:46, doc. RNDr. Martin Maška, Ph.D.
Anotace
V originále
Complementing collections of 3D time-lapse image data with comprehensive manual annotations is an extremely laborious and often impracticable task, which hinders objective benchmarking of bioimage analysis workflows as well as training of widespread deep-learning-based approaches. In this paper, we present a novel simulation system capable of generating synthetic 3D time-lapse sequences of multiple mutually interacting cells with filopodial protrusions, accompanied by inherently generated reference annotations, in order to stimulate the development of fully 3D bioimage analysis workflows for filopodium segmentation and tracking in complex scenarios with multiple mutually interacting cells. The system integrates its predecessor, which was designed for single-cell, collision-unaware scenarios only, with proactive, mechanics-based handling of collisions between multiple filopodia, multiple cell bodies, or their combinations. We demonstrate its potential on two generated 3D time-lapse sequences of multiple lung cancer cells with curvilinear filopodia, which visually resemble confocal fluorescence microscopy image data.
Návaznosti
GJ16-03909Y, projekt VaV |
|