2018
Application of GIS to Empirical Windthrow Risk Model in Mountain Forested Landscapes
KREJČÍ, Lukáš, Jaromír KOLEJKA, Vít VOŽENÍLEK a Ivo MACHARZákladní údaje
Originální název
Application of GIS to Empirical Windthrow Risk Model in Mountain Forested Landscapes
Název česky
Využití GIS pro empirický model rizika polomů horských lesních krajin
Autoři
KREJČÍ, Lukáš (203 Česká republika), Jaromír KOLEJKA (203 Česká republika, garant, domácí), Vít VOŽENÍLEK (203 Česká republika) a Ivo MACHAR (203 Česká republika)
Vydání
Forests, Basel, MDPI AG, 2018, 1999-4907
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10508 Physical geography
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.116
Kód RIV
RIV/00216224:14410/18:00103630
Organizační jednotka
Pedagogická fakulta
UT WoS
000427520600049
Klíčová slova česky
empirické modelování; narušení lesa; monokulury smrku ztepilého, model rizika; prostorová analýza; polom
Klíčová slova anglicky
empirical modelling; forest disturbance; Norway spruce dominated forests; risk model; spatial analysis; windthrow
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 21. 1. 2020 12:27, Dana Nesnídalová
V originále
Norway spruce dominates mountain forests in Europe. Natural variations in the mountainous coniferous forests are strongly influenced by all the main components of forest and landscape dynamics: species diversity, the structure of forest stands, nutrient cycling, carbon storage, and other ecosystem services. This paper deals with an empirical windthrow risk model based on the integration of logistic regression into GIS to assess forest vulnerability to wind-disturbance in the mountain spruce forests of Šumava National Park (Czech Republic). It is an area where forest management has been the focus of international discussions by conservationists, forest managers, and stakeholders. The authors developed the empirical windthrow risk model, which involves designing an optimized data structure containing dependent and independent variables entering logistic regression. The results from the model, visualized in the form of map outputs, outline the probability of risk to forest stands from wind in the examined territory of the national park. Such an application of the empirical windthrow risk model could be used as a decision support tool for the mountain spruce forests in a study area. Future development of these models could be useful for other protected European mountain forests dominated by Norway spruce.
Česky
Norway spruce dominates mountain forests in Europe. Natural variations in the mountainous coniferous forests are strongly influenced by all the main components of forest and landscape dynamics: species diversity, the structure of forest stands, nutrient cycling, carbon storage, and other ecosystem services. This paper deals with an empirical windthrow risk model based on the integration of logistic regression into GIS to assess forest vulnerability to wind-disturbance in the mountain spruce forests of Šumava National Park (Czech Republic). It is an area where forest management has been the focus of international discussions by conservationists, forest managers, and stakeholders. The authors developed the empirical windthrow risk model, which involves designing an optimized data structure containing dependent and independent variables entering logistic regression. The results from the model, visualized in the form of map outputs, outline the probability of risk to forest stands from wind in the examined territory of the national park. Such an application of the empirical windthrow risk model could be used as a decision support tool for the mountain spruce forests in a study area. Future development of these models could be useful for other protected European mountain forests dominated by Norway spruce.