2018
Conceptual Issues in Mastery Criteria: Differentiating Uncertainty and Degrees of Knowledge
PELÁNEK, RadekZákladní údaje
Originální název
Conceptual Issues in Mastery Criteria: Differentiating Uncertainty and Degrees of Knowledge
Autoři
PELÁNEK, Radek (203 Česká republika, garant, domácí)
Vydání
New York, Artificial Intelligence in Education, od s. 450-461, 12 s. 2018
Nakladatel
Springer
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10200 1.2 Computer and information sciences
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14330/18:00104015
Organizační jednotka
Fakulta informatiky
ISBN
978-3-319-93842-4
ISSN
UT WoS
000877321800033
Klíčová slova anglicky
mastery learning; student modeling
Změněno: 25. 10. 2024 16:18, Mgr. Natálie Hílek
Anotace
V originále
Mastery learning is a common personalization strategy in adaptive educational systems. A mastery criterion decides whether a learner should continue practice of a current topic or move to a more advanced topic. This decision is typically done based on comparison with a mastery threshold. We argue that the commonly used mastery criteria combine two different aspects of knowledge estimate in the comparison to this threshold: the degree of achieved knowledge and the uncertainty of the estimate. We propose a novel learner model that provides conceptually clear treatment of these two aspects. The model is a generalization of the commonly used Bayesian knowledge tracing and logistic models and thus also provides insight into the relationship of these two types of learner models. We compare the proposed mastery criterion to commonly used criteria and discuss consequences for practical development of educational systems.