D 2018

Corpus Annotation Pipeline for Non-standard Texts

PELIKÁNOVÁ, Zuzana and Zuzana NEVĚŘILOVÁ

Basic information

Original name

Corpus Annotation Pipeline for Non-standard Texts

Authors

PELIKÁNOVÁ, Zuzana (203 Czech Republic, guarantor, belonging to the institution) and Zuzana NEVĚŘILOVÁ (203 Czech Republic, belonging to the institution)

Edition

Switzerland, Text, Speech, and Dialogue, 21st International Conference, TSD 2018, p. 304-312, 9 pp. 2018

Publisher

Springer International Publishing

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

Switzerland

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

printed version "print"

RIV identification code

RIV/00216224:14330/18:00104585

Organization unit

Faculty of Informatics

ISBN

978-3-030-00794-2

UT WoS

000611532300032

Keywords in English

Non-standard language; Interlingual homographs; Corpora annotation

Tags

Tags

International impact, Reviewed
Změněno: 2/5/2019 06:28, RNDr. Pavel Šmerk, Ph.D.

Abstract

V originále

According to some estimations (e.g. [9]), web corpora contain over 6% of foreign material (borrowings, language mixing, named entities). Since annotation pipelines are usually built upon standard and correct data, the resulting annotation of web corpora often contains serious errors. We studied in depth annotation errors of the web corpus czTenTen 12 and proposed an extension to the tagger desamb that had been used for czTenTen annotation. First, the subcorpus was made using the most problematic documents from czTenTen. Second, measures were established for the most frequent annotation errors. Third, we established several experiments in which we extended the annotation pipeline so it could annotate foreign material and multi-word expressions. Finally, we compared the new annotations of the subcorpus with the original ones.

Links

MUNI/33/55939/2017, interní kód MU
Name: Ověření úspěšnosti technik zpracování přirozeného jazyka pro extrakci informací ze skenovaných dokumentů
Investor: Masaryk University