2019
Electron-Spin Structure and Metal-Ligand Bonding in Open-Shell Systems from Relativistic EPR and NMR: A Case Study of Square-Planar Iridium Catalysts
BORA, Pankaj Lochan, Jan NOVOTNÝ, Kenneth RUUD, Stanislav KOMOROVSKY, Radek MAREK et. al.Základní údaje
Originální název
Electron-Spin Structure and Metal-Ligand Bonding in Open-Shell Systems from Relativistic EPR and NMR: A Case Study of Square-Planar Iridium Catalysts
Autoři
BORA, Pankaj Lochan (356 Indie, domácí), Jan NOVOTNÝ (203 Česká republika, domácí), Kenneth RUUD (578 Norsko), Stanislav KOMOROVSKY (703 Slovensko) a Radek MAREK (203 Česká republika, garant, domácí)
Vydání
Journal of Chemical Theory and Computation, American Chemical Society, 2019, 1549-9618
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10403 Physical chemistry
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 5.011
Kód RIV
RIV/00216224:14740/19:00107199
Organizační jednotka
Středoevropský technologický institut
UT WoS
000455558200020
Klíčová slova anglicky
EPR; NMR; relativistic DFT; g-tensor; A-tensor; metal-ligand bond
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 26. 2. 2020 16:35, Mgr. Pavla Foltynová, Ph.D.
Anotace
V originále
Electron and nuclear magnetic resonance spectroscopies are indispensable and powerful methods for investigating the molecular and electronic structures of open-shell systems. We demonstrate that the NMR and EPR parameters are extremely sensitive quantitative probes for the electronic spin density around heavy-metal atoms and the metal-ligand bonding. Using relativistic density-functional theory, we have analyzed the relation between the spin density and the EPR and NMR parameters in paramagnetic iridium(II/IV) complexes with a PNP pincer ligand. As the magnetic-response parameters for compounds containing 5d transition metal(s) are heavily affected by spin-orbit coupling, relativistic effects must be included in the calculations. We have used a recent implementation of the fully-relativistic Dirac-Kohn-Sham (DKS) method employing the hybrid PBE0 functional and an implicit solvent model to calculate EPR parameters and hyperfine NMR shifts. The modulation of the metal–ligand bond by the trans substituent (-Cl or -N) and the electronic spin structure around the central metal atom and ligands are shown to be reflected in the “long-range” through-bond Fermi-contact (FC) contributions to the ligand 13C and 1H hyperfine couplings. Interestingly, the hyperfine coupling constant of the ligand atom L (A_L) bonded directly to the iridium center changes its sign because of the dominating role of the paramagnetic spin-orbit (PSO) term. Furthermore, the electronic g-shift and the PSO contribution to the ligand A_L are shown to invert their signs when nitrogen is substituted for chlorine, reflecting the different formal metal oxidation states and the change in metal–ligand bond character. A full understanding of the substituent effects is provided by using chemical bond concepts in combination with a molecular-orbital (MO) theory analysis of the second-order perturbation theory expression for the EPR parameters. Our findings are easily transferable to other systems containing d-block elements and beyond. Relativistic DFT calculations of magnetic-resonance parameters are expected to frequently assist in future experimental observations and the characterization of hitherto unknown unstable or exotic species.
Návaznosti
GA18-05421S, projekt VaV |
| ||
LQ1601, projekt VaV |
| ||
8X17009, projekt VaV |
|