J 2018

Advanced and Rationalized Atomic Force Microscopy Analysis Unveils Specific Properties of Controlled Cell Mechanics

CALUORI, Guido, Jan PŘIBYL, Martin PEŠL, Jorge OLIVER-DE LA CRUZ, Giorgia NARDONE et. al.

Základní údaje

Originální název

Advanced and Rationalized Atomic Force Microscopy Analysis Unveils Specific Properties of Controlled Cell Mechanics

Autoři

CALUORI, Guido (380 Itálie, domácí), Jan PŘIBYL (203 Česká republika, garant, domácí), Martin PEŠL (203 Česká republika, domácí), Jorge OLIVER-DE LA CRUZ (203 Česká republika), Giorgia NARDONE (203 Česká republika), Petr SKLÁDAL (203 Česká republika, domácí) a Giancarlo FORTE (380 Itálie)

Vydání

Frontiers in Physiology, Lausanne, Frontiers Media, 2018, 1664-042X

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

30105 Physiology

Stát vydavatele

Švýcarsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 3.201

Kód RIV

RIV/00216224:14740/18:00105343

Organizační jednotka

Středoevropský technologický institut

UT WoS

000441953700001

Klíčová slova anglicky

atomic force microscopy; cell biomechanics; BEEC; force mapping; mechanical modeling; stiffness tomography; Hippo pathway; mechanotransduction

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 13. 3. 2019 12:27, Mgr. Pavla Foltynová, Ph.D.

Anotace

V originále

The cell biomechanical properties play a key role in the determination of the changes during the essential cellular functions, such as contraction, growth, and migration. Recent advances in nano-technologies have enabled the development of new experimental and modeling approaches to study cell biomechanics, with a level of insights and reliability that were not possible in the past. The use of atomic force microscopy (AFM) for force spectroscopy allows nanoscale mapping of the cell topography and mechanical properties under, nearly physiological conditions. A proper evaluation process of such data is an essential factor to obtain accurate values of the cell elastic properties (primarily Young's modulus). Several numerical models were published in the literature, describing the depth sensing indentation as interaction process between the elastic surface and indenting probe. However, many studies are still relying on the nowadays outdated Hertzian model from the nineteenth century, or its modification by Sneddon. The lack of comparison between the Hertz/Sneddon model with their modern modifications blocks the development of advanced analysis software and further progress of AFM promising technology into biological sciences. In this work, we applied a rationalized use of mechanical models for advanced postprocessing and interpretation of AFM data. We investigated the effect of the mechanical model choice on the final evaluation of cellular elasticity. We then selected samples subjected to different physicochemical modulators, to show how a critical use of AFM data handling can provide more information than simple elastic modulus estimation. Our contribution is intended as a methodological discussion of the limitations and benefits of AFM-based advanced mechanical analysis, to refine the quantification of cellular elastic properties and its correlation to undergoing cellular processes in vitro.

Návaznosti

LM2015043, projekt VaV
Název: Česká infrastruktura pro integrativní strukturní biologii (Akronym: CIISB)
Investor: Ministerstvo školství, mládeže a tělovýchovy ČR, Czech Infrastructure for Integrative Structural Biology
LQ1601, projekt VaV
Název: CEITEC 2020 (Akronym: CEITEC2020)
Investor: Ministerstvo školství, mládeže a tělovýchovy ČR, CEITEC 2020