2018
Automation bias in medicine: The influence of automated diagnoses on interpreter accuracy and uncertainty when reading electrocardiograms
BOND, Raymond R., Tomáš NOVOTNÝ, Irena ANDRŠOVÁ, Lumír KOC, Martina ŠIŠÁKOVÁ et. al.Základní údaje
Originální název
Automation bias in medicine: The influence of automated diagnoses on interpreter accuracy and uncertainty when reading electrocardiograms
Autoři
BOND, Raymond R. (826 Velká Británie a Severní Irsko, garant), Tomáš NOVOTNÝ (203 Česká republika, domácí), Irena ANDRŠOVÁ (203 Česká republika, domácí), Lumír KOC (203 Česká republika, domácí), Martina ŠIŠÁKOVÁ (203 Česká republika, domácí), Dewar FINLAY (826 Velká Británie a Severní Irsko), Daniel GULDENRING (826 Velká Británie a Severní Irsko), James MCLAUGHLIN (826 Velká Británie a Severní Irsko), Aaron PEACE (826 Velká Británie a Severní Irsko), Victoria MCGILLIGAN (826 Velká Británie a Severní Irsko), Stephen J. LESLIE (826 Velká Británie a Severní Irsko), Hui WANG (826 Velká Británie a Severní Irsko) a Marek MALIK (826 Velká Británie a Severní Irsko)
Vydání
JOURNAL OF ELECTROCARDIOLOGY, PHILADELPHIA, CHURCHILL LIVINGSTONE INC MEDICAL PUBLISHERS, 2018, 0022-0736
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30201 Cardiac and Cardiovascular systems
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 1.166
Kód RIV
RIV/00216224:14110/18:00105777
Organizační jednotka
Lékařská fakulta
UT WoS
000454674000002
Klíčová slova anglicky
Electrocardiogram
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 9. 2. 2019 21:01, Soňa Böhmová
Anotace
V originále
Introduction: Interpretation of the 12-lead Electrocardiogram (ECG) is normally assisted with an automated diagnosis (AD), which can facilitate an 'automation bias' where interpreters can be anchored. In this paper, we studied, 1) the effect of an incorrect AD on interpretation accuracy and interpreter confidence (a proxy for uncertainty), and 2) whether confidence and other interpreter features can predict interpretation accuracy using machine learning. Methods: This study analysed 9000 ECG interpretations from cardiology and non-cardiology fellows (CFs and non-CFs). One third of the ECGs involved no ADs, one third with ADs (half as incorrect) and one third had multiple ADs. Interpretations were scored and interpreter confidence was recorded for each interpretation and subsequently standardised using sigma scaling. Spearman coefficients were used for correlation analysis and C5.0 decision trees were used for predicting interpretation accuracy using basic interpreter features such as confidence, age, experience and designation. Results: Interpretation accuracies achieved by CFs and non-CFs dropped by 43.20% and 58.95% respectively when an incorrect AD was presented (p < 0.001). Overall correlation between scaled confidence and interpretation accuracy was higher amongst CFs. However, correlation between confidence and interpretation accuracy decreased for both groups when an incorrect AD was presented. We found that an incorrect AD disturbs the reliability of interpreter confidence in predicting accuracy. An incorrect AD has a greater effect on the confidence of non-CFs (although this is not statistically significant it is close to the threshold, p = 0.065). The best C5.0 decision tree achieved an accuracy rate of 64.67% (p < 0.001), however this is only 6.56% greater than the no information-rate. Conclusion: Incorrect ADs reduce the interpreter's diagnostic accuracy indicating an automation bias. Non-CFs tend to agree more with the ADs in comparison to CFs, hence less expert physicians are more effected by automation bias. Incorrect ADs reduce the interpreter's confidence and also reduces the predictive power of confidence for predicting accuracy (even more so for non-CFs). Whilst a statistically significant model was developed, it is difficult to predict interpretation accuracy using machine learning on basic features such as interpreter confidence, age, reader experience and designation. (C) 2018 Elsevier Inc. All rights reserved.