D 2018

Autoencoders vs. others for anomaly detection

MIKLÁŠOVÁ, Kristína, Ondřej LOMIČ, Lukáš CÍSAR, Lubomír POPELÍNSKÝ, Veronika KREJČÍŘOVÁ et. al.

Základní údaje

Originální název

Autoencoders vs. others for anomaly detection

Název česky

Autoencodery vs. jiné metody pro detekci anomálií

Autoři

MIKLÁŠOVÁ, Kristína (703 Slovensko), Ondřej LOMIČ (203 Česká republika), Lukáš CÍSAR (703 Slovensko), Lubomír POPELÍNSKÝ (203 Česká republika, garant, domácí) a Veronika KREJČÍŘOVÁ (203 Česká republika)

Vydání

Brno, DATA A ZNALOSTI & WIKT 2018, sborník konference, od s. 215-220, 6 s. 2018

Nakladatel

Vysoké učení technické v Brně

Další údaje

Jazyk

angličtina

Typ výsledku

Stať ve sborníku

Obor

10200 1.2 Computer and information sciences

Stát vydavatele

Česká republika

Utajení

není předmětem státního či obchodního tajemství

Forma vydání

elektronická verze "online"

Kód RIV

RIV/00216224:14330/18:00105831

Organizační jednotka

Fakulta informatiky

ISBN

978-80-214-5679-2

Klíčová slova česky

Autoencodery · Local Outlier Factor (LOF) · z-skore · anomalie · PascalVOC image dataset · extrakce rysů

Klíčová slova anglicky

Autoencoders · Local Outlier Factor (LOF) · z-score · anomalies · PascalVOC image dataset · feature extraction

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 22. 1. 2019 22:40, doc. RNDr. Lubomír Popelínský, Ph.D.

Anotace

V originále

The paper deals with a task of finding anomalies in the set of pictures using autoencoders and comparison of results with other methods searching for outliers, namely LOF and z-score. Outliers found by these methods are compared to outliers found by project team members. Process consists of preprocessing of pictures using pretrained deep neural nets (one at a time), reducing dimension using PCA, normalization of features and applying methods on pictures, either on a whole set or subsets divided by classes (dividing the pictures to groups by objects of interest that can be found in them). Output of methods with different attribute settings was compared to outliers found by team members using confusion matrix and F1-score. The results were not very positive, no significant relationships were found between anomalies found by team members and by anomalies found by individual methods. Possible reasons for this are discussed.

Česky

The paper deals with a task of finding anomalies in the set of pictures using autoencoders and comparison of results with other methods searching for outliers, namely LOF and z-score. Outliers found by these methods are compared to outliers found by project team members. Process consists of preprocessing of pictures using pretrained deep neural nets (one at a time), reducing dimension using PCA, normalization of features and applying methods on pictures, either on a whole set or subsets divided by classes (dividing the pictures to groups by objects of interest that can be found in them). Output of methods with different attribute settings was compared to outliers found by team members using confusion matrix and F1-score. The results were not very positive, no significant relationships were found between anomalies found by team members and by anomalies found by individual methods. Possible reasons for this are discussed.

Návaznosti

MUNI/A/0854/2017, interní kód MU
Název: Rozsáhlé výpočetní systémy: modely, aplikace a verifikace VII.
Investor: Masarykova univerzita, Rozsáhlé výpočetní systémy: modely, aplikace a verifikace VII., DO R. 2020_Kategorie A - Specifický výzkum - Studentské výzkumné projekty