2018
Cholesterol Protects the Oxidized Lipid Bilayer from Water Injury: An All-Atom Molecular Dynamics Study
OWEN, Michael Christopher, W. KULIG, T. ROG, I. VATTULAINEN, B. STRODEL et. al.Základní údaje
Originální název
Cholesterol Protects the Oxidized Lipid Bilayer from Water Injury: An All-Atom Molecular Dynamics Study
Autoři
OWEN, Michael Christopher (124 Kanada, garant, domácí), W. KULIG (246 Finsko), T. ROG (246 Finsko), I. VATTULAINEN (246 Finsko) a B. STRODEL (276 Německo)
Vydání
JOURNAL OF MEMBRANE BIOLOGY, NEW YORK, SPRINGER, 2018, 0022-2631
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10608 Biochemistry and molecular biology
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 1.746
Kód RIV
RIV/00216224:14740/18:00106584
Organizační jednotka
Středoevropský technologický institut
UT WoS
000437103200020
Klíčová slova anglicky
Lipid oxidation; Cholesterol protection; Oxidative stress; Oxidized membranes; Pore formation
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 13. 3. 2019 11:20, Mgr. Pavla Foltynová, Ph.D.
Anotace
V originále
In an effort to delineate how cholesterol protects membrane structure under oxidative stress conditions, we monitored the changes to the structure of lipid bilayers comprising 30 mol% cholesterol and an increasing concentration of Class B oxidized 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) glycerophospholipids, namely, 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PoxnoPC), and 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), using atomistic molecular dynamics simulations. Increasing the content of oxidized phospholipids (oxPLs) from 0 to 60 mol% oxPL resulted in a characteristic reduction in bilayer thickness and increase in area per lipid, thereby increasing the exposure of the membrane hydrophobic region to water. However, cholesterol was observed to help reduce water injury by moving into the bilayer core and forming more hydrogen bonds with the oxPLs. Cholesterol also resists altering its tilt angle, helping to maintain membrane integrity. Water that enters the 1-nm-thick core region remains part of the bulk water on either side of the bilayer, with relatively few water molecules able to traverse through the bilayer. In cholesterol-rich membranes, the bilayer does not form pores at concentrations of 60 mol% oxPL as was shown in previous simulations in the absence of cholesterol.