2018
Deep convolutional neural network-based segmentation and classification of difficult to define metastatic spinal lesions in 3D CT data
CHMELIK, Jiri, Roman JAKUBICEK, Petr WALEK, Jiri JAN, Petr OUŘEDNÍČEK et. al.Základní údaje
Originální název
Deep convolutional neural network-based segmentation and classification of difficult to define metastatic spinal lesions in 3D CT data
Autoři
CHMELIK, Jiri (203 Česká republika, garant), Roman JAKUBICEK (203 Česká republika), Petr WALEK (203 Česká republika), Jiri JAN (203 Česká republika), Petr OUŘEDNÍČEK (203 Česká republika, domácí), Lukas LAMBERT (203 Česká republika), Elena AMADORI (380 Itálie) a Giampaolo GAVELLI (380 Itálie)
Vydání
Medical Image Analysis, AMSTERDAM, ELSEVIER SCIENCE BV, 2018, 1361-8415
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30224 Radiology, nuclear medicine and medical imaging
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 8.880
Kód RIV
RIV/00216224:14110/18:00106599
Organizační jednotka
Lékařská fakulta
UT WoS
000446286600007
Klíčová slova anglicky
CT analysis; Spinal metastasis; Convolutional neural network; Computer aided detection
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 13. 3. 2019 11:40, Soňa Böhmová
Anotace
V originále
This paper aims to address the segmentation and classification of lyric and sclerotic metastatic lesions that are difficult to define by using spinal 3D Computed Tomography (CT) images obtained from highly pathologically affected cases. As the lesions are ill-defined and consequently it is difficult to find relevant image features that would enable detection and classification of lesions by classical methods of texture and shape analysis, the problem is solved by automatic feature extraction provided by a deep Convolutional Neural Network (CNN). Our main contributions are: (i) individual CNN architecture, and pre-processing steps that are dependent on a patient data and a scan protocol - it enables work with different types of CT scans; (ii) medial axis transform (MAT) post-processing for shape simplification of segmented lesion candidates with Random Forest (RF) based meta-analysis; and (iii) usability of the proposed method on whole-spine CTs (cervical, thoracic, lumbar), which is not treated in other published methods (they work with thoracolumbar segments of spine only). Our proposed method has been tested on our own dataset annotated by two mutually independent radiologists and has been compared to other published methods. This work is part of the ongoing complex project dealing with spine analysis and spine lesion longitudinal studies. (C) 2018 Elsevier B.V. All rights reserved.