2018
Analytical Solution for Long Battery Lifetime Prediction in Nonadaptive Systems
IVANOV, Dmitry, Kim G. LARSEN, Sibylle SCHUPP a Jiří SRBAZákladní údaje
Originální název
Analytical Solution for Long Battery Lifetime Prediction in Nonadaptive Systems
Autoři
IVANOV, Dmitry (643 Rusko), Kim G. LARSEN (208 Dánsko), Sibylle SCHUPP (276 Německo) a Jiří SRBA (203 Česká republika, garant, domácí)
Vydání
Netherlands, Proceedings of the 15th International Conference on Quantitative Evaluation of SysTems (QEST'18), od s. 173-189, 17 s. 2018
Nakladatel
Springer
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Odkazy
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14330/18:00106626
Organizační jednotka
Fakulta informatiky
ISBN
978-3-319-99153-5
ISSN
UT WoS
000548912200011
Klíčová slova anglicky
UPPAAL SMC; battery models; statistical model checking; wireless protocols
Štítky
Změněno: 16. 5. 2022 14:34, Mgr. Michal Petr
Anotace
V originále
Uppaal SMC is a state-of-the-art tool for modelling and statistical analysis of hybrid systems, allowing the user to directly model the expected battery consumption in battery-operated devices. The tool employs a numerical approach for solving differential equations describing the continuous evolution of a hybrid system, however, the addition of a battery model significantly slows down the simulation and decreases the precision of the analysis. Moreover, Uppaal SMC is not optimized for obtaining simulations with durations of realistic battery lifetimes. We propose an analytical approach to address the performance and precision issues of battery modelling, and a trace extrapolation technique for extending the prediction horizon of Uppaal SMC. Our approach shows a performance gain of up to 80% on two industrial wireless sensor protocol models, while improving the precision with up to 55%. As a proof of concept, we develop a tool prototype where we apply our extrapolation technique for predicting battery lifetimes and show that the expected battery lifetime for several months of device operation can be computed within a reasonable computation time.