D 2018

Analytical Solution for Long Battery Lifetime Prediction in Nonadaptive Systems

IVANOV, Dmitry, Kim G. LARSEN, Sibylle SCHUPP a Jiří SRBA

Základní údaje

Originální název

Analytical Solution for Long Battery Lifetime Prediction in Nonadaptive Systems

Autoři

IVANOV, Dmitry (643 Rusko), Kim G. LARSEN (208 Dánsko), Sibylle SCHUPP (276 Německo) a Jiří SRBA (203 Česká republika, garant, domácí)

Vydání

Netherlands, Proceedings of the 15th International Conference on Quantitative Evaluation of SysTems (QEST'18), od s. 173-189, 17 s. 2018

Nakladatel

Springer

Další údaje

Jazyk

angličtina

Typ výsledku

Stať ve sborníku

Obor

10201 Computer sciences, information science, bioinformatics

Stát vydavatele

Nizozemské království

Utajení

není předmětem státního či obchodního tajemství

Forma vydání

tištěná verze "print"

Odkazy

Impakt faktor

Impact factor: 0.402 v roce 2005

Kód RIV

RIV/00216224:14330/18:00106626

Organizační jednotka

Fakulta informatiky

ISBN

978-3-319-99153-5

ISSN

UT WoS

000548912200011

Klíčová slova anglicky

UPPAAL SMC; battery models; statistical model checking; wireless protocols

Štítky

Změněno: 16. 5. 2022 14:34, Mgr. Michal Petr

Anotace

V originále

Uppaal SMC is a state-of-the-art tool for modelling and statistical analysis of hybrid systems, allowing the user to directly model the expected battery consumption in battery-operated devices. The tool employs a numerical approach for solving differential equations describing the continuous evolution of a hybrid system, however, the addition of a battery model significantly slows down the simulation and decreases the precision of the analysis. Moreover, Uppaal SMC is not optimized for obtaining simulations with durations of realistic battery lifetimes. We propose an analytical approach to address the performance and precision issues of battery modelling, and a trace extrapolation technique for extending the prediction horizon of Uppaal SMC. Our approach shows a performance gain of up to 80% on two industrial wireless sensor protocol models, while improving the precision with up to 55%. As a proof of concept, we develop a tool prototype where we apply our extrapolation technique for predicting battery lifetimes and show that the expected battery lifetime for several months of device operation can be computed within a reasonable computation time.