2019
Data Quality Management Framework for Smart Grid Systems
GE, Mouzhi, Stanislav CHREN, Bruno ROSSI a Tomáš PITNERZákladní údaje
Originální název
Data Quality Management Framework for Smart Grid Systems
Autoři
GE, Mouzhi (156 Čína, garant, domácí), Stanislav CHREN (703 Slovensko, domácí), Bruno ROSSI (380 Itálie, domácí) a Tomáš PITNER (203 Česká republika, domácí)
Vydání
Switzerland, Proceedings of the 22nd International Conference on Business Information Systems, od s. 299-310, 12 s. 2019
Nakladatel
Springer
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Kód RIV
RIV/00216224:14330/19:00109300
Organizační jednotka
Fakulta informatiky
ISBN
978-3-030-20481-5
ISSN
UT WoS
000490868400024
Klíčová slova anglicky
Smart grid; Data quality; Data quality problem; Smart meter
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 3. 5. 2020 11:14, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
New devices in smart grid such as smart meters and sensors have emerged to become a massive and complex network, where a large volume of data is flowing to the smart grid systems. Those data can be real-time, fast-moving, and originated from a vast variety of terminal devices. However, the big smart grid data also bring various data quality problems, which may cause the delayed, inaccurate analysis of results, even fatal errors in the smart grid system. This paper, therefore, identifies a comprehensive taxonomy of typical data quality problems in the smart grid. Based on the adaptation of established data quality research and frameworks, this paper proposes a new data quality management framework that classifies the typical data quality problems into related data quality dimensions, contexts, as well as countermeasures. Based on this framework, this paper not only provides a systematic overview of data quality in the smart grid domain, but also offers practical guidance to improve data quality in smart grids such as which data quality dimensions are critical and which data quality problems can be addressed in which context.
Návaznosti
EF16_019/0000822, projekt VaV |
|