2018
Robustness of Representative Signals Relative to Data Loss Using Atlas-Based Parcellations
GAJDOŠ, Martin, Eva VÝTVAROVÁ, Jan FOUSEK, Martin LAMOŠ, Michal MIKL et. al.Základní údaje
Originální název
Robustness of Representative Signals Relative to Data Loss Using Atlas-Based Parcellations
Autoři
GAJDOŠ, Martin (203 Česká republika, domácí), Eva VÝTVAROVÁ (203 Česká republika, domácí), Jan FOUSEK (203 Česká republika, domácí), Martin LAMOŠ (203 Česká republika, domácí) a Michal MIKL (203 Česká republika, garant, domácí)
Vydání
BRAIN TOPOGRAPHY, DORDRECHT, SPRINGER, 2018, 0896-0267
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30103 Neurosciences
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 3.104
Kód RIV
RIV/00216224:14740/18:00101793
Organizační jednotka
Středoevropský technologický institut
UT WoS
000440763900004
Klíčová slova anglicky
Parcellation; fMRI; Atlas; Representative signal; Coverage
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 19. 3. 2019 15:54, Mgr. Pavla Foltynová, Ph.D.
Anotace
V originále
Parcellation-based approaches are an important part of functional magnetic resonance imaging data analysis. They are a necessary processing step for sorting data in structurally or functionally homogenous regions. Real functional magnetic resonance imaging datasets usually do not cover the atlas template completely; they are often spatially constrained due to the physical limitations of MR sequence settings, the inter-individual variability in brain shape, etc. When using a parcellation template, many regions are not completely covered by actual data. This paper addresses the issue of the area coverage required in real data in order to reliably estimate the representative signal and the influence of this kind of data loss on network analysis metrics. We demonstrate this issue on four datasets using four different widely used parcellation templates. We used two erosion approaches to simulate data loss on the whole-brain level and the ROI-specific level. Our results show that changes in ROI coverage have a systematic influence on network measures. Based on the results of our analysis, we recommend controlling the ROI coverage and retaining at least 60% of the area in order to ensure at least 80% of explained variance of the original signal.
Návaznosti
GA14-33143S, projekt VaV |
| ||
LM2015062, projekt VaV |
| ||
LQ1601, projekt VaV |
|