2019
Adaptive Large Neighborhood Search for Scheduling of Mobile Robots
DANG, Vinh Quang, Hana RUDOVÁ a Cong Thanh NGUYENZákladní údaje
Originální název
Adaptive Large Neighborhood Search for Scheduling of Mobile Robots
Autoři
DANG, Vinh Quang (704 Vietnam, domácí), Hana RUDOVÁ (203 Česká republika, garant, domácí) a Cong Thanh NGUYEN (704 Vietnam)
Vydání
New York, NY, USA, The Genetic and Evolutionary Computation Conference (GECCO), od s. 224-232, 9 s. 2019
Nakladatel
ACM
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Kód RIV
RIV/00216224:14330/19:00109329
Organizační jednotka
Fakulta informatiky
ISBN
978-1-4503-6111-8
UT WoS
000523218400029
Klíčová slova anglicky
Scheduling; Mobile robots; Adaptive Large Neighborhood Search; Flexible Manufacturing Systems
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 18. 11. 2021 13:30, Mgr. Michal Petr
Anotace
V originále
Our work addresses the scheduling of mobile robots for transportation and processing of operations on machines in a flexible manufacturing system. Both mobile robots and automated guided vehicles (AGVs) can transport components among machines in the working space. Nevertheless, the difference is that mobile robots considered in this work can process specific value-added operations, which is not possible for AGVs. This new feature increases complexity as well as computational demands. To summarize, we need to compute a sequence of operations on machines, the robot assignments for transportation, and the robot assignments for processing. The main contribution is the proposal of an adaptive large neighborhood search algorithm with the sets of exploration and exploitation heuristics to solve the problem considering makespan minimization. Experimental evaluation is presented on the existing benchmarks. The quality of our solutions is compared to a heuristic based on genetic algorithm and mixed- integer programming proposed recently. The comparison shows that our approach can achieve comparable results in real time which is in order of magnitude faster than the earlier heuristic.