D 2019

Adaptive Large Neighborhood Search for Scheduling of Mobile Robots

DANG, Vinh Quang, Hana RUDOVÁ a Cong Thanh NGUYEN

Základní údaje

Originální název

Adaptive Large Neighborhood Search for Scheduling of Mobile Robots

Autoři

DANG, Vinh Quang (704 Vietnam, domácí), Hana RUDOVÁ (203 Česká republika, garant, domácí) a Cong Thanh NGUYEN (704 Vietnam)

Vydání

New York, NY, USA, The Genetic and Evolutionary Computation Conference (GECCO), od s. 224-232, 9 s. 2019

Nakladatel

ACM

Další údaje

Jazyk

angličtina

Typ výsledku

Stať ve sborníku

Obor

10201 Computer sciences, information science, bioinformatics

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Forma vydání

elektronická verze "online"

Odkazy

Kód RIV

RIV/00216224:14330/19:00109329

Organizační jednotka

Fakulta informatiky

ISBN

978-1-4503-6111-8

UT WoS

000523218400029

Klíčová slova anglicky

Scheduling; Mobile robots; Adaptive Large Neighborhood Search; Flexible Manufacturing Systems

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 18. 11. 2021 13:30, Mgr. Michal Petr

Anotace

V originále

Our work addresses the scheduling of mobile robots for transportation and processing of operations on machines in a flexible manufacturing system. Both mobile robots and automated guided vehicles (AGVs) can transport components among machines in the working space. Nevertheless, the difference is that mobile robots considered in this work can process specific value-added operations, which is not possible for AGVs. This new feature increases complexity as well as computational demands. To summarize, we need to compute a sequence of operations on machines, the robot assignments for transportation, and the robot assignments for processing. The main contribution is the proposal of an adaptive large neighborhood search algorithm with the sets of exploration and exploitation heuristics to solve the problem considering makespan minimization. Experimental evaluation is presented on the existing benchmarks. The quality of our solutions is compared to a heuristic based on genetic algorithm and mixed- integer programming proposed recently. The comparison shows that our approach can achieve comparable results in real time which is in order of magnitude faster than the earlier heuristic.