2020
Detection of Algorithmically Generated Domain Names in Botnets
VISHWAKARMA, Deepak Kumar, Ashutosh BHATIA a Zdeněk ŘÍHAZákladní údaje
Originální název
Detection of Algorithmically Generated Domain Names in Botnets
Název česky
Detekce algoritmicky generovaných doménových jmen v botnetech
Autoři
VISHWAKARMA, Deepak Kumar (356 Indie), Ashutosh BHATIA (356 Indie) a Zdeněk ŘÍHA (203 Česká republika, domácí)
Vydání
Cham, Switzerland, Advanced Information Networking and Applications, AINA 2019, od s. 1279-1290, 12 s. 2020
Nakladatel
Springer Nature Switzerland
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Kód RIV
RIV/00216224:14330/20:00113963
Organizační jednotka
Fakulta informatiky
ISBN
978-3-030-15031-0
ISSN
Klíčová slova anglicky
Domain name system; Domain generations algorithms; Botnets; Command and control servers
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 28. 4. 2020 13:02, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Botnets pose a major threat to the information security of organizations and individuals. The bots (malware infected hosts) receive commands and updates from the Command and Control (C&C) servers, and hence, contacting and communicating with these servers is an essential requirement of bots. However, once a malware is identified in the infected host, it is easy to find its C&C server and block it, if the domain names of the servers are hard-coded in the malware. To counter such detection, many malwares families use probabilistic algorithms known as domain generation algorithms (DGAs) to generate domain names for the C&C servers. This makes it difficult to track down the C&C servers of the Botnet even after the malware is identified. In this paper, we propose a probabilistic approach for the identification of domain names which are likely to be generated by a malware using DGA. The proposed solution is based on the hypothesis that human generated domain names are usually inspired by the words from a particular language (say English), whereas DGA generated domain names should contain random sub-strings in it. Results show that the percentage of false negatives in the detection of DGA generated domain names using the proposed method is less than 29% across 30 DGA families considered by us in our experimentation.
Návaznosti
GA102/06/0711, projekt VaV |
|