2018
Solving Problems on Graphs of High Rank-Width
EIBEN, Eduard, Robert GANIAN a Stefan SZEIDERZákladní údaje
Originální název
Solving Problems on Graphs of High Rank-Width
Autoři
EIBEN, Eduard (703 Slovensko), Robert GANIAN (203 Česká republika, garant, domácí) a Stefan SZEIDER (40 Rakousko)
Vydání
Algorithmica, Springer, 2018, 0178-4617
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 0.882
Kód RIV
RIV/00216224:14330/18:00106821
Organizační jednotka
Fakulta informatiky
UT WoS
000424203700014
Klíčová slova anglicky
parameterized complexity; rank-width; modulators
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 3. 5. 2019 15:00, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
A modulator in a graph is a vertex set whose deletion places the considered graph into some specified graph class. The cardinality of a modulator to various graph classes has long been used as a structural parameter which can be exploited to obtain fixed-parameter algorithms for a range of hard problems. Here we investigate what happens when a graph contains a modulator which is large but “well-structured” (in the sense of having bounded rank-width). Can such modulators still be exploited to obtain efficient algorithms? And is it even possible to find such modulators efficiently? We first show that the parameters derived from such well-structured modulators are more powerful for fixed-parameter algorithms than the cardinality of modulators and rank-width itself. Then, we develop a fixed-parameter algorithm for finding such well-structured modulators to every graph class which can be characterized by a finite set of forbidden induced subgraphs. We proceed by showing how well-structured modulators can be used to obtain efficient parameterized algorithms for Minimum Vertex Cover and Maximum Clique. Finally, we use the concept of well-structured modulators to develop an algorithmic meta-theorem for deciding problems expressible in monadic second order logic, and prove that this result is tight in the sense that it cannot be generalized to LinEMSO problems.
Návaznosti
MSM0021622419, záměr |
|