2018
Finitely forcible graph limits are universal
COOPER, Jacob; Daniel KRÁĽ a TL MARTINSZákladní údaje
Originální název
Finitely forcible graph limits are universal
Autoři
COOPER, Jacob (826 Velká Británie a Severní Irsko); Daniel KRÁĽ (203 Česká republika, garant, domácí) a TL MARTINS
Vydání
Advances in Mathematics, SAN DIEGO, ACADEMIC PRESS INC ELSEVIER SCIENCE, 2018, 0001-8708
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10101 Pure mathematics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 1.435
Kód RIV
RIV/00216224:14330/18:00106842
Organizační jednotka
Fakulta informatiky
UT WoS
000451363700020
EID Scopus
2-s2.0-85055086923
Klíčová slova česky
grafové limity; extremální teorie grafů
Klíčová slova anglicky
Graph limits; Extremal graph theory
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 13. 1. 2021 11:55, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
The theory of graph limits represents large graphs by analytic objects called graphons. Graph limits determined by finitely many graph densities, which are represented by finitely forcible graphons, arise in various scenarios, particularly within extremal combinatorics. Lovasz and Szegedy conjectured that all such graphons possess a simple structure, e.g., the space of their typical vertices is always finite dimensional; this was disproved by several ad hoc constructions of complex finitely forcible graphons. We prove that any graphon is a subgraphon of a finitely forcible graphon. This dismisses any hope for a result showing that finitely forcible graphons possess a simple structure, and is surprising when contrasted with the fact that finitely forcible graphons form a meager set in the space of all graphons. In addition, since any finitely forcible graphon represents the unique minimizer of some linear combination of densities of subgraphs, our result also shows that such minimization problems, which conceptually are among the simplest kind within extremal graph theory, may in fact have unique optimal solutions with arbitrarily complex structure. (C) 2018 Elsevier Inc. All rights reserved.