2019
Benchmarking Search and Annotation in Continuous Human Skeleton Sequences
SEDMIDUBSKÝ, Jan, Petr ELIÁŠ a Pavel ZEZULAZákladní údaje
Originální název
Benchmarking Search and Annotation in Continuous Human Skeleton Sequences
Autoři
SEDMIDUBSKÝ, Jan (203 Česká republika, garant, domácí), Petr ELIÁŠ (203 Česká republika, domácí) a Pavel ZEZULA (203 Česká republika, domácí)
Vydání
New York, NY, USA, International Conference on Multimedia Retrieval (ICMR), od s. 38-42, 5 s. 2019
Nakladatel
ACM
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10200 1.2 Computer and information sciences
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Kód RIV
RIV/00216224:14330/19:00107371
Organizační jednotka
Fakulta informatiky
ISBN
978-1-4503-6765-3
UT WoS
000482188900008
Klíčová slova anglicky
motion capture dataset;continuous 3D skeleton sequence;stream-based processing;benchmark;subsequence search;action detection;mining
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 15. 4. 2020 10:19, doc. RNDr. Jan Sedmidubský, Ph.D.
Anotace
V originále
Motion capture data are digital representations of human movements in form of 3D trajectories of multiple body joints. To understand the captured motions, similarity-based processing and deep learning have already proved to be effective, especially in classifying pre-segmented actions. However, in real-world scenarios motion data are typically captured as long continuous sequences, without explicit knowledge of semantic partitioning. To make such unsegmented data accessible and reusable as required by many applications, there is a strong requirement to analyze, search, annotate and mine them automatically. However, there is currently an absence of datasets and benchmarks to test and compare the capabilities of the developed techniques for continuous motion data processing. In this paper, we introduce a new large-scale LSMB19 dataset consisting of two 3D skeleton sequences of a total length of 54.5 hours. We also define a benchmark on two important multimedia retrieval operations: subsequence search and annotation. Additionally, we exemplify the usability of the benchmark by establishing baseline results for these operations.
Návaznosti
GA19-02033S, projekt VaV |
|