2020
Hyperintensional Reasoning based on Natural Language Knowledge Base
DUŽÍ, Marie a Aleš HORÁKZákladní údaje
Originální název
Hyperintensional Reasoning based on Natural Language Knowledge Base
Autoři
DUŽÍ, Marie (203 Česká republika) a Aleš HORÁK (203 Česká republika, garant, domácí)
Vydání
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, World Scientific Publishing Company, 2020, 0218-4885
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10200 1.2 Computer and information sciences
Stát vydavatele
Singapur
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 1.518
Kód RIV
RIV/00216224:14330/20:00113966
Organizační jednotka
Fakulta informatiky
UT WoS
000537358800004
Klíčová slova anglicky
transparent intensional logic; hyperintensional logic; natural language analysis; context recognition; knowledge based system
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 29. 4. 2021 07:52, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
The success of automated reasoning techniques over large natural-language texts heav- ily relies on a fine-grained analysis of natural language assumptions. While there is a common agreement that the analysis should be hyperintensional, most of the automatic reasoning systems are still based on an intensional logic, at the best. In this paper, we introduce the system of reasoning based on a fine-grained, hyperintensional analysis. To this end we apply Tichy’s Transparent Intensional Logic (TIL) with its procedural se- mantics. TIL is a higher-order, hyperintensional logic of partial functions, in particular apt for a fine-grained natural-language analysis. Within TIL we recognise three kinds of context, namely extensional, intensional and hyperintensional, in which a particular natural-language term, or rather its meaning, can occur. Having defined the three kinds of context and implemented an algorithm of context recognition, we are in a position to develop and implement an extensional logic of hyperintensions with the inference machine that should neither over-infer nor under-infer.
Návaznosti
GA18-23891S, projekt VaV |
|