J 2019

Motion in central gravitational field with Schwarzschild metric as a non-holonomic system with non-linear constraint: Geometrical setting

ČECH, Michal a Jana MUSILOVÁ

Základní údaje

Originální název

Motion in central gravitational field with Schwarzschild metric as a non-holonomic system with non-linear constraint: Geometrical setting

Název česky

Pohyb v centrálním gravitačním poli s Schwarzschildovou metrikou jako neholonomní systém s nelineární vazbou: geometrická teorie

Autoři

ČECH, Michal (203 Česká republika, domácí) a Jana MUSILOVÁ (203 Česká republika, garant, domácí)

Vydání

International Journal of Non-Linear Mechanics, Oxford, Pergamon Press, 2019, 0020-7462

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10300 1.3 Physical sciences

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 2.313

Kód RIV

RIV/00216224:14310/19:00109780

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000469904900003

Klíčová slova česky

neholonomní mechanika; vázané systémy; geometrická teorie na fibrovaných varietách; Schwarzschildova metrika

Klíčová slova anglicky

non-linear mechanics; constrained systems; geometrical theory on fibred manifolds; Schwarzschild metric

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 1. 4. 2020 10:29, Mgr. Michal Petr

Anotace

V originále

Mechanical systems with non-holonomic constraints are often studied in technical applications. In such situations linear or affine non-holonomic constraints are usually relevant. On the other hand, there exist mechanical systems which can be naturally interpreted as non-holonomic ones with non-linear constraint. Such systems occur typically in the theory of relativity. Within physical theories they are standardly described by physical methods, not as systems subjected to non-holonomic constraints. Nevertheless, every non-holonomic system can be treated by a universal purely mathematical approach — geometrical theory on fibred manifolds with Chetaev type constraint submanifolds. For describing all aspects of a system behaviour, including all symmetries and conservation laws, it is sufficient to have the corresponding unconstrained Lagrangian and the constraint. No additional physical assumptions are needed. We demonstrate this for a typical physical system with a non-linear non-holonomic constraint — a relativistic particle moving in central field of a non-rotating star. Within the geometrical theory we obtain constraint equations of motion and their solution. Especially, we obtain equations or constraint symmetries, their solution for coordinate transformations, and corresponding conservation laws from general relations obtained on the base of this universal geometrical theory.