2019
Motion in central gravitational field with Schwarzschild metric as a non-holonomic system with non-linear constraint: Geometrical setting
ČECH, Michal a Jana MUSILOVÁZákladní údaje
Originální název
Motion in central gravitational field with Schwarzschild metric as a non-holonomic system with non-linear constraint: Geometrical setting
Název česky
Pohyb v centrálním gravitačním poli s Schwarzschildovou metrikou jako neholonomní systém s nelineární vazbou: geometrická teorie
Autoři
ČECH, Michal (203 Česká republika, domácí) a Jana MUSILOVÁ (203 Česká republika, garant, domácí)
Vydání
International Journal of Non-Linear Mechanics, Oxford, Pergamon Press, 2019, 0020-7462
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10300 1.3 Physical sciences
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.313
Kód RIV
RIV/00216224:14310/19:00109780
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000469904900003
Klíčová slova česky
neholonomní mechanika; vázané systémy; geometrická teorie na fibrovaných varietách; Schwarzschildova metrika
Klíčová slova anglicky
non-linear mechanics; constrained systems; geometrical theory on fibred manifolds; Schwarzschild metric
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 1. 4. 2020 10:29, Mgr. Michal Petr
Anotace
V originále
Mechanical systems with non-holonomic constraints are often studied in technical applications. In such situations linear or affine non-holonomic constraints are usually relevant. On the other hand, there exist mechanical systems which can be naturally interpreted as non-holonomic ones with non-linear constraint. Such systems occur typically in the theory of relativity. Within physical theories they are standardly described by physical methods, not as systems subjected to non-holonomic constraints. Nevertheless, every non-holonomic system can be treated by a universal purely mathematical approach — geometrical theory on fibred manifolds with Chetaev type constraint submanifolds. For describing all aspects of a system behaviour, including all symmetries and conservation laws, it is sufficient to have the corresponding unconstrained Lagrangian and the constraint. No additional physical assumptions are needed. We demonstrate this for a typical physical system with a non-linear non-holonomic constraint — a relativistic particle moving in central field of a non-rotating star. Within the geometrical theory we obtain constraint equations of motion and their solution. Especially, we obtain equations or constraint symmetries, their solution for coordinate transformations, and corresponding conservation laws from general relations obtained on the base of this universal geometrical theory.