J 2019

Diffusion tensor and restriction spectrum imaging reflect different aspects of neurodegeneration in Parkinson's disease

HOPE, Tuva R., Per SELNES, Irena REKTOROVÁ, Ľubomíra ANDERKOVÁ, Nela NĚMCOVÁ ELFMARKOVÁ et. al.

Základní údaje

Originální název

Diffusion tensor and restriction spectrum imaging reflect different aspects of neurodegeneration in Parkinson's disease

Autoři

HOPE, Tuva R. (578 Norsko, garant), Per SELNES (578 Norsko), Irena REKTOROVÁ (203 Česká republika, domácí), Ľubomíra ANDERKOVÁ (703 Slovensko, domácí), Nela NĚMCOVÁ ELFMARKOVÁ (203 Česká republika, domácí), Zuzana BALÁŽOVÁ (703 Slovensko, domácí), Anders DALE (840 Spojené státy), Atle BJORNERUD (578 Norsko) a Tormod FLADBY

Vydání

Plos one, San Francisco, Public Library of Science, 2019, 1932-6203

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

30103 Neurosciences

Stát vydavatele

Spojené státy

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 2.740

Kód RIV

RIV/00216224:14740/19:00109991

Organizační jednotka

Středoevropský technologický institut

UT WoS

000469759100127

Klíčová slova anglicky

Parkinson's disease; neurodegeneration; diffusion tensor imaging; restriction spectrum imaging

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 26. 2. 2020 16:01, Mgr. Pavla Foltynová, Ph.D.

Anotace

V originále

To meet the need for Parkinson's disease biomarkers and evidence for amount and distribution of pathological changes, MRI diffusion tensor imaging (DTI) has been explored in a number of previous studies. However, conflicting results warrant further investigations. As tissue microstructure, particularly of the grey matter, is heterogeneous, a more precise diffusion model may benefit tissue characterization. The purpose of this study was to analyze the diffusion-based imaging technique restriction spectrum imaging (RSI) and DTI, and their ability to detect microstructural changes within brain regions associated with motor function in Parkinson's disease. Diffusion weighted (DW) MR images of a total of 100 individuals, (46 Parkinson's disease patients and 54 healthy controls) were collected using b-values of 0-4000s/mm(2). Output diffusion-based maps were estimated based on the RSI-model combining the full set of DW-images (Cellular Index (CI), Neurite Density (ND)) and DTI-model combining b = 0 and b = 1000 s/mm(2) (fractional anisotropy (FA), Axial-, Mean-and Radial diffusivity (AD, MD, RD)). All parametric maps were analyzed in a voxel-wise group analysis, with focus on typical brain regions associated with Parkinson's disease pathology. CI, ND and DTI diffusivity metrics (AD, MD, RD) demonstrated the ability to differentiate between groups, with strongest performance within the thalamus, prone to pathology in Parkinson's disease. Our results indicate that RSI may improve the predictive power of diffusion-based MRI, and provide additional information when combined with the standard diffusivity measurements. In the absence of major atrophy, diffusion techniques may reveal microstructural pathology. Our results suggest that protocols for MRI diffusion imaging may be adapted to more sensitive detection of pathology at different sites of the central nervous system.

Návaznosti

EF16_013/0001775, projekt VaV
Název: Modernizace a podpora výzkumných aktivit národní infrastruktury pro biologické a medicínské zobrazování Czech-BioImaging