2019
Diffusion tensor and restriction spectrum imaging reflect different aspects of neurodegeneration in Parkinson's disease
HOPE, Tuva R., Per SELNES, Irena REKTOROVÁ, Ľubomíra ANDERKOVÁ, Nela NĚMCOVÁ ELFMARKOVÁ et. al.Základní údaje
Originální název
Diffusion tensor and restriction spectrum imaging reflect different aspects of neurodegeneration in Parkinson's disease
Autoři
HOPE, Tuva R. (578 Norsko, garant), Per SELNES (578 Norsko), Irena REKTOROVÁ (203 Česká republika, domácí), Ľubomíra ANDERKOVÁ (703 Slovensko, domácí), Nela NĚMCOVÁ ELFMARKOVÁ (203 Česká republika, domácí), Zuzana BALÁŽOVÁ (703 Slovensko, domácí), Anders DALE (840 Spojené státy), Atle BJORNERUD (578 Norsko) a Tormod FLADBY
Vydání
Plos one, San Francisco, Public Library of Science, 2019, 1932-6203
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30103 Neurosciences
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.740
Kód RIV
RIV/00216224:14740/19:00109991
Organizační jednotka
Středoevropský technologický institut
UT WoS
000469759100127
Klíčová slova anglicky
Parkinson's disease; neurodegeneration; diffusion tensor imaging; restriction spectrum imaging
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 26. 2. 2020 16:01, Mgr. Pavla Foltynová, Ph.D.
Anotace
V originále
To meet the need for Parkinson's disease biomarkers and evidence for amount and distribution of pathological changes, MRI diffusion tensor imaging (DTI) has been explored in a number of previous studies. However, conflicting results warrant further investigations. As tissue microstructure, particularly of the grey matter, is heterogeneous, a more precise diffusion model may benefit tissue characterization. The purpose of this study was to analyze the diffusion-based imaging technique restriction spectrum imaging (RSI) and DTI, and their ability to detect microstructural changes within brain regions associated with motor function in Parkinson's disease. Diffusion weighted (DW) MR images of a total of 100 individuals, (46 Parkinson's disease patients and 54 healthy controls) were collected using b-values of 0-4000s/mm(2). Output diffusion-based maps were estimated based on the RSI-model combining the full set of DW-images (Cellular Index (CI), Neurite Density (ND)) and DTI-model combining b = 0 and b = 1000 s/mm(2) (fractional anisotropy (FA), Axial-, Mean-and Radial diffusivity (AD, MD, RD)). All parametric maps were analyzed in a voxel-wise group analysis, with focus on typical brain regions associated with Parkinson's disease pathology. CI, ND and DTI diffusivity metrics (AD, MD, RD) demonstrated the ability to differentiate between groups, with strongest performance within the thalamus, prone to pathology in Parkinson's disease. Our results indicate that RSI may improve the predictive power of diffusion-based MRI, and provide additional information when combined with the standard diffusivity measurements. In the absence of major atrophy, diffusion techniques may reveal microstructural pathology. Our results suggest that protocols for MRI diffusion imaging may be adapted to more sensitive detection of pathology at different sites of the central nervous system.
Návaznosti
EF16_013/0001775, projekt VaV |
|