J 2019

EEG Reactivity Predicts Individual Efficacy of Vagal Nerve Stimulation in Intractable Epileptics

BRÁZDIL, Milan; Irena DOLEŽALOVÁ; Eva KORIŤÁKOVÁ; Jan CHLÁDEK; Robert ROMAN et. al.

Základní údaje

Originální název

EEG Reactivity Predicts Individual Efficacy of Vagal Nerve Stimulation in Intractable Epileptics

Autoři

BRÁZDIL, Milan (203 Česká republika, garant, domácí); Irena DOLEŽALOVÁ (203 Česká republika, domácí); Eva KORIŤÁKOVÁ (203 Česká republika, domácí); Jan CHLÁDEK (203 Česká republika, domácí); Robert ROMAN (203 Česká republika, domácí); Martin PAIL (203 Česká republika, domácí); Pavel JURAK (203 Česká republika); Daniel Joel SHAW (826 Velká Británie a Severní Irsko, domácí) a Jan CHRASTINA (203 Česká republika, domácí)

Vydání

FRONTIERS IN NEUROLOGY, LAUSANNE, FRONTIERS MEDIA SA, 2019, 1664-2295

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

30210 Clinical neurology

Stát vydavatele

Švýcarsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 2.889

Kód RIV

RIV/00216224:14110/19:00108497

Organizační jednotka

Lékařská fakulta

UT WoS

000466518800001

EID Scopus

2-s2.0-85068092549

Klíčová slova anglicky

vagal nerve stimulation; neurostimulation; epilepsy; efficacy prediction; EEG reactivity; epilepsy treatment

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 11. 5. 2020 13:04, Mgr. Tereza Miškechová

Anotace

V originále

Background: Chronic vagal nerve stimulation (VNS) is a well-established non-pharmacological treatment option for drug-resistant epilepsy. This study sought to develop a statistical model for prediction of VNS efficacy. We hypothesized that reactivity of the electroencephalogram (EEG) to external stimuli measured during routine preoperative evaluation differs between VNS responders and non-responders. Materials and Methods: Power spectral analyses were computed retrospectively on pre-operative EEG recordings from 60 epileptic patients with VNS. Thirty five responders and 25 non-responders were compared on the relative power values in four standard frequency bands and eight conditions of clinical assessment-eyes opening/closing, photic stimulation, and hyperventilation. Using logistic regression, groups of electrodes within anatomical areas identified as maximally discriminative by n leave-one-out iterations were used to classify patients. The reliability of the predictive model was verified with an independent data-set from 22 additional patients. Results: Power spectral analyses revealed significant differences in EEG reactivity between responders and non-responders; specifically, the dynamics of alpha and gamma activity strongly reflected VNS efficacy. Using individual EEG reactivity to develop and validate a predictive model, we discriminated between responders and non-responders with 86% accuracy, 83% sensitivity, and 90% specificity. Conclusion: We present a new statistical model with which EEG reactivity to external stimuli during routine presurgical evaluation can be seen as a promising avenue for the identification of patients with favorable VNS outcome. This novel method for the prediction of VNS efficacy might represent a breakthrough in the management of drug-resistant epilepsy, with wide-reaching medical and economic implications.

Návaznosti

LQ1601, projekt VaV
Název: CEITEC 2020 (Akronym: CEITEC2020)
Investor: Ministerstvo školství, mládeže a tělovýchovy ČR, CEITEC 2020
NV19-04-00343, projekt VaV
Název: Predikce Efektu Stimulace u pacientů s Epilepsií (PRESEnCE) (Akronym: PRESEnCE)
Investor: Ministerstvo zdravotnictví ČR, Prediction of Stimulation Efficacy in Epilepsy