2019
EEG Reactivity Predicts Individual Efficacy of Vagal Nerve Stimulation in Intractable Epileptics
BRÁZDIL, Milan; Irena DOLEŽALOVÁ; Eva KORIŤÁKOVÁ; Jan CHLÁDEK; Robert ROMAN et. al.Základní údaje
Originální název
EEG Reactivity Predicts Individual Efficacy of Vagal Nerve Stimulation in Intractable Epileptics
Autoři
BRÁZDIL, Milan (203 Česká republika, garant, domácí); Irena DOLEŽALOVÁ (203 Česká republika, domácí); Eva KORIŤÁKOVÁ (203 Česká republika, domácí); Jan CHLÁDEK (203 Česká republika, domácí); Robert ROMAN (203 Česká republika, domácí); Martin PAIL (203 Česká republika, domácí); Pavel JURAK (203 Česká republika); Daniel Joel SHAW (826 Velká Británie a Severní Irsko, domácí) a Jan CHRASTINA (203 Česká republika, domácí)
Vydání
FRONTIERS IN NEUROLOGY, LAUSANNE, FRONTIERS MEDIA SA, 2019, 1664-2295
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30210 Clinical neurology
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.889
Kód RIV
RIV/00216224:14110/19:00108497
Organizační jednotka
Lékařská fakulta
UT WoS
000466518800001
EID Scopus
2-s2.0-85068092549
Klíčová slova anglicky
vagal nerve stimulation; neurostimulation; epilepsy; efficacy prediction; EEG reactivity; epilepsy treatment
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 11. 5. 2020 13:04, Mgr. Tereza Miškechová
Anotace
V originále
Background: Chronic vagal nerve stimulation (VNS) is a well-established non-pharmacological treatment option for drug-resistant epilepsy. This study sought to develop a statistical model for prediction of VNS efficacy. We hypothesized that reactivity of the electroencephalogram (EEG) to external stimuli measured during routine preoperative evaluation differs between VNS responders and non-responders. Materials and Methods: Power spectral analyses were computed retrospectively on pre-operative EEG recordings from 60 epileptic patients with VNS. Thirty five responders and 25 non-responders were compared on the relative power values in four standard frequency bands and eight conditions of clinical assessment-eyes opening/closing, photic stimulation, and hyperventilation. Using logistic regression, groups of electrodes within anatomical areas identified as maximally discriminative by n leave-one-out iterations were used to classify patients. The reliability of the predictive model was verified with an independent data-set from 22 additional patients. Results: Power spectral analyses revealed significant differences in EEG reactivity between responders and non-responders; specifically, the dynamics of alpha and gamma activity strongly reflected VNS efficacy. Using individual EEG reactivity to develop and validate a predictive model, we discriminated between responders and non-responders with 86% accuracy, 83% sensitivity, and 90% specificity. Conclusion: We present a new statistical model with which EEG reactivity to external stimuli during routine presurgical evaluation can be seen as a promising avenue for the identification of patients with favorable VNS outcome. This novel method for the prediction of VNS efficacy might represent a breakthrough in the management of drug-resistant epilepsy, with wide-reaching medical and economic implications.
Návaznosti
LQ1601, projekt VaV |
| ||
NV19-04-00343, projekt VaV |
|