2019
Cell segmentation methods for label-free contrast microscopy: review and comprehensive comparison
VIČAR, Tomáš, Jan BALVAN, Josef JAROŠ, Florian JUG, Radim KOLAR et. al.Základní údaje
Originální název
Cell segmentation methods for label-free contrast microscopy: review and comprehensive comparison
Autoři
VIČAR, Tomáš (203 Česká republika, domácí), Jan BALVAN (203 Česká republika, domácí), Josef JAROŠ (203 Česká republika, domácí), Florian JUG (276 Německo), Radim KOLAR (203 Česká republika), Michal MASAŘÍK (203 Česká republika, domácí) a Jaromír GUMULEC (203 Česká republika, garant, domácí)
Vydání
BMC Bioinformatics, London, BioMed Central, 2019, 1471-2105
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30105 Physiology
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.242
Kód RIV
RIV/00216224:14110/19:00107532
Organizační jednotka
Lékařská fakulta
UT WoS
000473132400006
Klíčová slova anglicky
Microscopy; Cell segmentation; Image reconstruction; Methods comparison; Differential contrast image; Quantitative phase imaging; Laplacian of Gaussians
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 31. 1. 2020 16:17, Mgr. Tereza Miškechová
Anotace
V originále
BackgroundBecause of its non-destructive nature, label-free imaging is an important strategy for studying biological processes. However, routine microscopic techniques like phase contrast or DIC suffer from shadow-cast artifacts making automatic segmentation challenging. The aim of this study was to compare the segmentation efficacy of published steps of segmentation work-flow (image reconstruction, foreground segmentation, cell detection (seed-point extraction) and cell (instance) segmentation) on a dataset of the same cells from multiple contrast microscopic modalities.ResultsWe built a collection of routines aimed at image segmentation of viable adherent cells grown on the culture dish acquired by phase contrast, differential interference contrast, Hoffman modulation contrast and quantitative phase imaging, and we performed a comprehensive comparison of available segmentation methods applicable for label-free data. We demonstrated that it is crucial to perform the image reconstruction step, enabling the use of segmentation methods originally not applicable on label-free images. Further we compared foreground segmentation methods (thresholding, feature-extraction, level-set, graph-cut, learning-based), seed-point extraction methods (Laplacian of Gaussians, radial symmetry and distance transform, iterative radial voting, maximally stable extremal region and learning-based) and single cell segmentation methods. We validated suitable set of methods for each microscopy modality and published them online.ConclusionsWe demonstrate that image reconstruction step allows the use of segmentation methods not originally intended for label-free imaging. In addition to the comprehensive comparison of methods, raw and reconstructed annotated data and Matlab codes are provided.
Návaznosti
GA18-24089S, projekt VaV |
| ||
MUNI/A/1298/2017, interní kód MU |
| ||
MUNI/A/1565/2018, interní kód MU |
| ||
ROZV/24/LF/2018, interní kód MU |
|