2019
A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors
BOHAČIAKOVÁ, Dáša, Marian HRUSKA-PLOCHAN, Rachel TSUNEMOTO, Wesley D. GIFFORD, Shawn P. DRISCOLL et. al.Základní údaje
Originální název
A scalable solution for isolating human multipotent clinical-grade neural stem cells from ES precursors
Autoři
BOHAČIAKOVÁ, Dáša (703 Slovensko, domácí), Marian HRUSKA-PLOCHAN (840 Spojené státy), Rachel TSUNEMOTO (840 Spojené státy), Wesley D. GIFFORD (840 Spojené státy), Shawn P. DRISCOLL (840 Spojené státy), Thomas D. GLENN (840 Spojené státy), Stephanie WU (840 Spojené státy), Silvia MARSALA (840 Spojené státy), Michael NAVARRO (840 Spojené státy), Takahiro TADOKORO (840 Spojené státy), Stefan JUHAS (203 Česká republika), Jana JUHASOVA (203 Česká republika), Oleksandr PLATOSHYN (840 Spojené státy), David PIPER (840 Spojené státy), Vickie SHECKLER (840 Spojené státy), Dara DITSWORTH (840 Spojené státy), Samuel L. PFAFF (840 Spojené státy) a Martin MARSALA (840 Spojené státy, garant)
Vydání
Stem Cell Research & Therapy, London, BMC, 2019, 1757-6512
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10601 Cell biology
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 5.116
Kód RIV
RIV/00216224:14110/19:00107589
Organizační jednotka
Lékařská fakulta
UT WoS
000461323900008
Klíčová slova anglicky
Human embryonic stem cell (hESC); Neural stem cell (NSC); Spinal cord; Amyotrophic lateral sclerosis (ALS); Spinal traumatic injury; Bioinformatic tools to study xenografts
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 14. 4. 2020 14:18, Mgr. Tereza Miškechová
Anotace
V originále
Background: A well-characterized method has not yet been established to reproducibly, efficiently, and safely isolate large numbers of clinical-grade multipotent human neural stem cells (hNSCs) from embryonic stem cells (hESCs). Consequently, the transplantation of neurogenic/gliogenic precursors into the CNS for the purpose of cell replacement or neuroprotection in humans with injury or disease has not achieved widespread testing and implementation. Methods: Here, we establish an approach for the in vitro isolation of a highly expandable population of hNSCs using the manual selection of neural precursors based on their colony morphology (CoMo-NSC). The purity and NSC properties of established and extensively expanded CoMo-NSC were validated by expression of NSC markers (flow cytometry, mRNA sequencing), lack of pluripotent markers and by their tumorigenic/differentiation profile after in vivo spinal grafting in three different animal models, including (i) immunodeficient rats, (ii) immunosuppressed ALS rats (SOD1G93A), or (iii) spinally injured immunosuppressed minipigs. Results: In vitro analysis of established CoMo-NSCs showed a consistent expression of NSC markers (Sox1, Sox2, Nestin, CD24) with lack of pluripotent markers (Nanog) and stable karyotype for more than 15 passages. Gene profiling and histology revealed that spinally grafted CoMo-NSCs differentiate into neurons, astrocytes, and oligodendrocytes over a 2–6-month period in vivo without forming neoplastic derivatives or abnormal structures. Moreover, transplanted CoMo-NSCs formed neurons with synaptic contacts and glia in a variety of host environments including immunodeficient rats, immunosuppressed ALS rats (SOD1G93A), or spinally injured minipigs, indicating these cells have favorable safety and differentiation characteristics. Conclusions: These data demonstrate that manually selected CoMo-NSCs represent a safe and expandable NSC population which can effectively be used in prospective human clinical cell replacement trials for the treatment of a variety of neurodegenerative disorders, including ALS, stroke, spinal traumatic, or spinal ischemic injury.
Návaznosti
GJ15-18316Y, projekt VaV |
| ||
GJ18-25429Y, projekt VaV |
|