2019
TiCaPCON-Supported Pt- and Fe-Based Nanoparticles and Related Antibacterial Activity
PONOMAREV, Viktor A., Aleksander N. SHEVEYKO, Elizaveta S. PERMYAKOVA, Jihyung LEE, Andrey A. VOEVODIN et. al.Základní údaje
Originální název
TiCaPCON-Supported Pt- and Fe-Based Nanoparticles and Related Antibacterial Activity
Autoři
PONOMAREV, Viktor A., Aleksander N. SHEVEYKO, Elizaveta S. PERMYAKOVA, Jihyung LEE, Andrey A. VOEVODIN, Diana BERMAN, Anton M. MANAKHOV (203 Česká republika), Miroslav MICHLÍČEK (203 Česká republika, garant, domácí), Pavel V. SLUKIN, Viktoriya V. FIRSTOVA, Sergey G. IGNATOV, Ilya V. CHEPKASOV, Zakhar I. POPOV a Dmitry V. SHTANSKY
Vydání
ACS Applied Materials & Interfaces, Washington, D.C. ACS Publications, 2019, 1944-8244
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
21001 Nano-materials
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 8.758
Kód RIV
RIV/00216224:14310/19:00110545
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000481567100012
Klíčová slova anglicky
antibacterial films; bactericide ion release; reactive oxygen species; electrochemical behavior; Kelvin probe force microscopy; microgalvanic effect
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 21. 3. 2020 18:38, Mgr. Pavla Foltynová, Ph.D.
Anotace
V originále
A rapid increase in the number of antibiotic-resistant bacteria urgently requires the development of new more effective yet safe materials to fight infection. Herein, we uncovered the contribution of different metal nanoparticles (NPs) (Pt, Fe, and their combination) homogeneously distributed over the surface of nanostructured TiCaPCON films in the total antibacterial activity toward eight types of clinically isolated bacterial strains (Escherichia coli K261, Klebsiella pneumoniae B1079k/17-3, Acinetobacter baumannii B1280A/17, Staphylococcus aureus no. 839, Staphylococcus epidermidis i5189-1, Enterococcus faecium Ya-235: VanA, E. faecium I-237: VanA, and E. coli U20) taking into account various factors that can affect bacterial mechanisms: surface chemistry and phase composition, wettability, ion release, generation of reactive oxygen species (ROS), potential difference and polarity change between NPs and the surrounding matrix, formation of microgalvanic couples on the sample surfaces, and contribution of a passive oxide layer, formed on the surface of films, to general kinetics of the NP dissolution. The results indicated that metal ion implantation and subsequent annealing significantly changed the chemistry of the TiCaPCON film surface. This, in turn, greatly affected the shedding of ions, ROS formation, potential difference between film components, and antibacterial activity. The presence of NPs was critical for ROS generation under UV or daylight irradiation. By eliminating the potential contribution of ions and ROS, we have shown that bacteria can be killed using direct microgalvanic interactions. The possibility of charge redistribution at the interfaces between Pt NPs and TiO2 (anatase and rutile), TiC, TiN, and TiCN components was demonstrated using density functional theory calculations. The TiCaPCON-supported Pt and Fe NPs were not toxic for lymphocytes and had no effect on the ability of lymphocytes to activate in response to a mitogen. This study provides new insights into understanding and designing of antibacterial yet biologically safe surfaces.
Návaznosti
LM2015041, projekt VaV |
| ||
LQ1601, projekt VaV |
|