2019
Exploiting Recommender Systems in Collaborative Healthcare
D'AURIA, Daniela, Mouzhi GE a Fabio PERSIAZákladní údaje
Originální název
Exploiting Recommender Systems in Collaborative Healthcare
Autoři
D'AURIA, Daniela (380 Itálie), Mouzhi GE (156 Čína, garant, domácí) a Fabio PERSIA
Vydání
Naples, Italy, Proceedings of the 16th International Symposium on Pervasive Systems, Algorithms and Networks, od s. 71-82, 12 s. 2019
Nakladatel
Springer Communications in Computer and Information Science
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Kód RIV
RIV/00216224:14330/19:00110607
Organizační jednotka
Fakulta informatiky
ISBN
978-3-030-30142-2
ISSN
Klíčová slova anglicky
Collaborative healthcare; Medical auxiliaries; Recommender systems
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 6. 5. 2020 15:34, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
With the development of new medical auxiliaries such as virtual reality and surgery robotics, recommender systems are emerged to interact with the medical auxiliaries and support doctor’s decisions and operations, especially in collaborative healthcare, recommender systems can interactively take into account the preferences and concerns from both patients and doctors. However, how to apply and integrate recommender systems is still not clear in collaborative healthcare. Therefore, from practical perspective this paper investigates the application of recommender systems in three typical collaborative healthcare domains, which are augmented/virtual reality, medicine and surgery robotics. The results not only provide the insights of how to integrate recommender systems with healthcare auxiliaries but also discuss the practical guidance of how to design recommender systems in collaborative healthcare.